• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 306
  • 83
  • 27
  • 20
  • 9
  • 8
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • Tagged with
  • 591
  • 437
  • 56
  • 50
  • 47
  • 47
  • 40
  • 33
  • 31
  • 26
  • 26
  • 26
  • 26
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Studies on the host-parasite interaction between Diphyllobothrium spp. (Cestoda Pseudophyllidea) and rainbow trout, Oncorhynchus mykiss (Walbaum, 1792)

Sharp, Gregory J. E. January 1990 (has links)
Diphyllobothrium dendriticum and D. ditremum have a wide distribution in the trout of Scottish lochs, although no specific trends in their overall distribution have been observed. The seasonal recruitment trends and development of infections with Diphyllobothrium spp. pleroceroids in wild rainbow trout, in one particular Scottish loch, were monitored regularly for the period 1986 to 1989. Infection varied between these years, but in 1987 intensities from March to November reached their highest levels in November when sampling ended. These two species reached infection intensities, in individual fish, higher than any previous reports and trout stocks appeared to be affected. Plerocercoids, in host-derived cysts, were located on the peritoneal stomach surface, the gross pathology of which is described. The cellular components of the host-derived cyst were examined in detail by light and electron microscopy. A number of leucocyte types, found within a collagenous matrix with associated fibroblasts, were observed. Leucocyte types included neutrophils, eosinophilic granular leucocytes, macrophages and occasional plasma cells. Antibody production, in response to natural infection, was examined by indirect immunofluorescence using serum on cryostat sections of plerocercoids obtained from wild-caught rainbow trout. The tegument of these larvae showed a positive fluorescence, indicating the presence of serum antibody in these trout. Semi-quantitative estimates of antibody titres were estimated by an optimised enzyme-linked immunosorbent assay (ELISA). To facilitate further examination of the events associated with the establishment of plerocercoids and associated host-derived cyst, under controlled conditions, a routinely maintained laboratory life cycle of D. dendriticum was established. This laboratory life cycle utilised Herring gulls (Larus agentatus) and the copepod, Cyclops abyssorum, as the definitive and first intermediate hosts respectively, and provided plerocercoid infections in trout which were examined at various times post infection. Tegumental extracts from the plerocercoids of D. dendriticum, obtained by freezing and thawing specimens, and conditioned medium obtained after in vitro maintenance of live plerocercoids, were prepared. These extracts were tested in respiratory burst assays and were found to stimulate the production of both hydrogen peroxide and superoxide anion by rainbow trout macrophages. The migratory responses of trout macrophages and neutrophils to these agents were also investigated, by an optimised Boyden technique using a 48 Well Micro Chemotaxis Chamber. Leucocytes were found to have an increased chemokinetic motility following stimulation/contact with these antigen preparations. Finally, to investigate if antigens on live parasites were attractive/stimulatory, an in vitro adherence assay was carried out. Procercoid stages, which share common antigens with the plerocercoid stage, were maintained in vitro and incubated with rainbow trout leucocyte suspensions, in the absence and presence of normal or immune serum from infected fish. Leucocytes adherence was considerably increased by the presence of immune serum, indicating the possible interaction of the non-specific and specific immune response in the host inflammatory reaction.
32

Rainbow holograms

Rush, Amy, Art, College of Fine Arts, UNSW January 2007 (has links)
Rainbow holography is the medium I have chosen to specialize in. Holography itself uses light as a sculptural element. In regards to my work, rainbow holography stresses the field of experimentation with the light spectrum until a certain point that I define as travelling the superhighway from reality to virtual worlds. My work appears then as the documentation, in the form of rainbow holograms, of this travel. It depicts narrative imagery while capturing the moments I existed in this virtual world set behind the rainbow. This project aims to present through still, 3D and filmic imagery the co ??? existence of the physical body and its psychological realm. The psychological reality is articulated as a fictional landscape and the rainbow is used as a metaphor for travel between real and virtual worlds. More importantly, I see holography or rainbow holography as a means of crystallising the vision of the unreachable world behind the rainbow. I see my practice as a new way of using this medium by using this rainbow world as subject matter within the rainbow hologram. By experimenting with combined image processing techniques within rainbow holography, such as analogue white light transmission holograms, full colour digital stereograms, and dot matrix holograms, it becomes possible to generate a synthetic new world. Here each pixel can have the potential to be every color of the rainbow spectrum simultaneously, depending on the angle of the eye of the perceiver. It is here that my investigation through holographic representation has led me to explore and create other worldly landscapes and to extend reality. Our longing to travel over the rainbow into our imagination is with us from a very young age. For me this desire has lasted well into adulthood and has somehow found itself at the centre of my creations over the last few years. The childlike and na??ve appearance of my imagery has the ability to evoke the feeling in the viewers of the nostalgia they may have felt as a child, when confronted with the intense experience and wonder of the imaginings of the rainbow. My work trades on a misunderstanding that the medium of holography is taken as a direct representation of an existing reality. My first hologram I???m a rainbow depicts an alter-egotistical projection of myself as a rainbow princess living in a far away fairytale rainbow galaxy, and communicating with earth beings via the technology of the message contained within the hologram. The hologram has often been associated in science fiction with a message to save the planet. This body of work invites viewers to delve into the depths of their imagination, to save this place where I have travelled by believing in it. As in the story of peter pan where the children are asked to clap their hands if they believe in fairies, by others believing in my imagination they are able to save it. The world within the imagination holds no fixed place; it is a shifting and dynamic space. This quality is shared with the rainbow, which is similarly ephemeral, vanishing and appearing within the eye of the beholder according to weather patterns. The rainbow hologram is a fixed rainbow. When replayed through the eyes of the viewer, the interaction with the real rainbow is recalled, and the viewer enters into the imagination to perceive the work. Throughout this paper I have referred to concepts and techniques in other fields such as physics, anthropology, art history and theory. My research is by no means intended as primarily a technical examination of the medium of rainbow holography. The holographic environments I have made rearrange elements from the real world with fictitious realities. They make people feel as if they are viewing a world that is real, but which imitates unreal ideas. These holographic environments enable viewers to experience ideas as a real place. As Rainbow holography is a relatively new medium, and as my own work uses the rainbow as a multi-layered tool I feel it necessary to investigate the appearance of the rainbow in nature and the reaction of humans to the rainbow as a mythical component in ancient cultures. I am interested in investigating how the rainbow has been used a metaphor for travelling from a material world to ???other worlds??? through its presence in various imaging processes through specific art works. The different ways the rainbow has been used have enabled me to more accurately understand my own work as being a nexus between depicting and generating rainbows. Furthermore, in the discussion of the application of rainbow holography I can show that my own work is necessarily different because of the way I am depicting a rainbow to explore undiscovered territory in which I am the author. Finally I look at how holography is perceived by the public, which helps me to explain the way in which my own work is perceived. Deliberately using the idea of an image in its surrounding context has helped to achieve my desired outcome: to make people believe that the world behind the rainbow really does exist and that I have travelled there, and that they too can do so via viewing my work.
33

Genetic alalysis [sic] of cortisol response in a wild X domestic rainbow trout cross

Martin, Kyle Edward, January 2007 (has links) (PDF)
Thesis (M.S. (zoology))--Washington State University, December 2007. / Includes bibliographical references.
34

Rainbow holograms

Rush, Amy, Art, College of Fine Arts, UNSW January 2007 (has links)
Rainbow holography is the medium I have chosen to specialize in. Holography itself uses light as a sculptural element. In regards to my work, rainbow holography stresses the field of experimentation with the light spectrum until a certain point that I define as travelling the superhighway from reality to virtual worlds. My work appears then as the documentation, in the form of rainbow holograms, of this travel. It depicts narrative imagery while capturing the moments I existed in this virtual world set behind the rainbow. This project aims to present through still, 3D and filmic imagery the co ??? existence of the physical body and its psychological realm. The psychological reality is articulated as a fictional landscape and the rainbow is used as a metaphor for travel between real and virtual worlds. More importantly, I see holography or rainbow holography as a means of crystallising the vision of the unreachable world behind the rainbow. I see my practice as a new way of using this medium by using this rainbow world as subject matter within the rainbow hologram. By experimenting with combined image processing techniques within rainbow holography, such as analogue white light transmission holograms, full colour digital stereograms, and dot matrix holograms, it becomes possible to generate a synthetic new world. Here each pixel can have the potential to be every color of the rainbow spectrum simultaneously, depending on the angle of the eye of the perceiver. It is here that my investigation through holographic representation has led me to explore and create other worldly landscapes and to extend reality. Our longing to travel over the rainbow into our imagination is with us from a very young age. For me this desire has lasted well into adulthood and has somehow found itself at the centre of my creations over the last few years. The childlike and na??ve appearance of my imagery has the ability to evoke the feeling in the viewers of the nostalgia they may have felt as a child, when confronted with the intense experience and wonder of the imaginings of the rainbow. My work trades on a misunderstanding that the medium of holography is taken as a direct representation of an existing reality. My first hologram I???m a rainbow depicts an alter-egotistical projection of myself as a rainbow princess living in a far away fairytale rainbow galaxy, and communicating with earth beings via the technology of the message contained within the hologram. The hologram has often been associated in science fiction with a message to save the planet. This body of work invites viewers to delve into the depths of their imagination, to save this place where I have travelled by believing in it. As in the story of peter pan where the children are asked to clap their hands if they believe in fairies, by others believing in my imagination they are able to save it. The world within the imagination holds no fixed place; it is a shifting and dynamic space. This quality is shared with the rainbow, which is similarly ephemeral, vanishing and appearing within the eye of the beholder according to weather patterns. The rainbow hologram is a fixed rainbow. When replayed through the eyes of the viewer, the interaction with the real rainbow is recalled, and the viewer enters into the imagination to perceive the work. Throughout this paper I have referred to concepts and techniques in other fields such as physics, anthropology, art history and theory. My research is by no means intended as primarily a technical examination of the medium of rainbow holography. The holographic environments I have made rearrange elements from the real world with fictitious realities. They make people feel as if they are viewing a world that is real, but which imitates unreal ideas. These holographic environments enable viewers to experience ideas as a real place. As Rainbow holography is a relatively new medium, and as my own work uses the rainbow as a multi-layered tool I feel it necessary to investigate the appearance of the rainbow in nature and the reaction of humans to the rainbow as a mythical component in ancient cultures. I am interested in investigating how the rainbow has been used a metaphor for travelling from a material world to ???other worlds??? through its presence in various imaging processes through specific art works. The different ways the rainbow has been used have enabled me to more accurately understand my own work as being a nexus between depicting and generating rainbows. Furthermore, in the discussion of the application of rainbow holography I can show that my own work is necessarily different because of the way I am depicting a rainbow to explore undiscovered territory in which I am the author. Finally I look at how holography is perceived by the public, which helps me to explain the way in which my own work is perceived. Deliberately using the idea of an image in its surrounding context has helped to achieve my desired outcome: to make people believe that the world behind the rainbow really does exist and that I have travelled there, and that they too can do so via viewing my work.
35

Rainbow holograms

Rush, Amy, Art, College of Fine Arts, UNSW January 2007 (has links)
Rainbow holography is the medium I have chosen to specialize in. Holography itself uses light as a sculptural element. In regards to my work, rainbow holography stresses the field of experimentation with the light spectrum until a certain point that I define as travelling the superhighway from reality to virtual worlds. My work appears then as the documentation, in the form of rainbow holograms, of this travel. It depicts narrative imagery while capturing the moments I existed in this virtual world set behind the rainbow. This project aims to present through still, 3D and filmic imagery the co ??? existence of the physical body and its psychological realm. The psychological reality is articulated as a fictional landscape and the rainbow is used as a metaphor for travel between real and virtual worlds. More importantly, I see holography or rainbow holography as a means of crystallising the vision of the unreachable world behind the rainbow. I see my practice as a new way of using this medium by using this rainbow world as subject matter within the rainbow hologram. By experimenting with combined image processing techniques within rainbow holography, such as analogue white light transmission holograms, full colour digital stereograms, and dot matrix holograms, it becomes possible to generate a synthetic new world. Here each pixel can have the potential to be every color of the rainbow spectrum simultaneously, depending on the angle of the eye of the perceiver. It is here that my investigation through holographic representation has led me to explore and create other worldly landscapes and to extend reality. Our longing to travel over the rainbow into our imagination is with us from a very young age. For me this desire has lasted well into adulthood and has somehow found itself at the centre of my creations over the last few years. The childlike and na??ve appearance of my imagery has the ability to evoke the feeling in the viewers of the nostalgia they may have felt as a child, when confronted with the intense experience and wonder of the imaginings of the rainbow. My work trades on a misunderstanding that the medium of holography is taken as a direct representation of an existing reality. My first hologram I???m a rainbow depicts an alter-egotistical projection of myself as a rainbow princess living in a far away fairytale rainbow galaxy, and communicating with earth beings via the technology of the message contained within the hologram. The hologram has often been associated in science fiction with a message to save the planet. This body of work invites viewers to delve into the depths of their imagination, to save this place where I have travelled by believing in it. As in the story of peter pan where the children are asked to clap their hands if they believe in fairies, by others believing in my imagination they are able to save it. The world within the imagination holds no fixed place; it is a shifting and dynamic space. This quality is shared with the rainbow, which is similarly ephemeral, vanishing and appearing within the eye of the beholder according to weather patterns. The rainbow hologram is a fixed rainbow. When replayed through the eyes of the viewer, the interaction with the real rainbow is recalled, and the viewer enters into the imagination to perceive the work. Throughout this paper I have referred to concepts and techniques in other fields such as physics, anthropology, art history and theory. My research is by no means intended as primarily a technical examination of the medium of rainbow holography. The holographic environments I have made rearrange elements from the real world with fictitious realities. They make people feel as if they are viewing a world that is real, but which imitates unreal ideas. These holographic environments enable viewers to experience ideas as a real place. As Rainbow holography is a relatively new medium, and as my own work uses the rainbow as a multi-layered tool I feel it necessary to investigate the appearance of the rainbow in nature and the reaction of humans to the rainbow as a mythical component in ancient cultures. I am interested in investigating how the rainbow has been used a metaphor for travelling from a material world to ???other worlds??? through its presence in various imaging processes through specific art works. The different ways the rainbow has been used have enabled me to more accurately understand my own work as being a nexus between depicting and generating rainbows. Furthermore, in the discussion of the application of rainbow holography I can show that my own work is necessarily different because of the way I am depicting a rainbow to explore undiscovered territory in which I am the author. Finally I look at how holography is perceived by the public, which helps me to explain the way in which my own work is perceived. Deliberately using the idea of an image in its surrounding context has helped to achieve my desired outcome: to make people believe that the world behind the rainbow really does exist and that I have travelled there, and that they too can do so via viewing my work.
36

Studies of aflatoxin B1 in rainbow trout (Salmo gairdneri) ;|b1. Carcinogenicity and chemical structure : 2. Tissue and subcellular distribution of 14C from aflatoxin B₁-14C

Ayres, James Lee 06 August 1968 (has links)
Graduation date: 1969
37

Molecular characterization of the MX genes of rainbow trout (Oncorhynchus mykiss)

Trobridge, Grant David 30 April 1996 (has links)
Graduation date: 1997
38

Effect of cyclopropenoid fatty acids on membrane components of liver of rainbow trout (Salmo gairdneri)

Einerson, Mark A. 20 September 1982 (has links)
Three studies were conducted to determine the effects of cyclopropenoid fatty acids (CPFA) on the membrane components of livers of rainbow trout (Salmo gairdneri). In the first study, ¹⁴C-sterculic acid was administered by intraperitoneal injection into rainbow trout and the trout maintained for 72 hours. The labelled sterculic acid was found in choline phospholipids (CP) and ethanolamine phospholipids (EP). Smaller amounts of label were found in other microsomal membrane lipid components. No label was found associated with the proteins of the microsomal membrane. Phospholipase A₂ treatment of isolated CP and EP showed ¹⁴C-sterculic acid to be preferentially esterified to the 1-position of the glycerol backbone. In the second study, the cleavable bifunctional protein crosslinking reagent dimethyl 3,3'-dithiobispropionimidate-2HCl (DTBP) was used in an attempt to study alterations in the spatial arrangement of proteins in liver microsomal and plasma membranes that might be induced by dietary CPFA. The use of this reagent failed to yield a clear picture of protein-protein interactions in the microsomal membrane due to the formation of high molecular weight aggregates that were not resolvable on polyacrylamide gels. On the other hand, the use of DTBP failed to crosslink the proteins of the plasma membrane. In the third study, two-dimensional polyacrylamide gel electrophoresis was used to assess the effects of dietary CPFA on protein composition of trout liver microsomal and plasma membranes. Proteins were separated in the first dimension on the basis of their isoelectric points and in the second dimension on the basis of their molecular weights. No major alterations in the composition of liver microsomal or plasma membranes were found to be induced by dietary CPFA. / Graduation date: 1983
39

Seasonal life history of Oncorhynchus mykiss in the South Fork John Day River Basin, Oregon /

Tattam, Ian A. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2007. / Printout. Includes bibliographical references (leaves 101-111). Also available on the World Wide Web.
40

Isolation, purification, and characterization of zinc-induced, metal-binding protein from liver of rainbow trout (Salmo gairdneri) /

Pierson, Keith B. January 1983 (has links)
Thesis (Ph. D.)--University of Washington, 1983. / Vita. Bibliography: leaves [59]-65.

Page generated in 0.0646 seconds