• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estabilidade de Liapunov e derivada radial / Liapunov stability and radial derivative

Alva Morales, Gerard John 31 October 2014 (has links)
Apresentaremos uma classe de energias potenciais $\\Pi \\in C^{\\infty}(\\Omega,R)$ que são s-decidíveis e que admitem funções auxiliares de Cetaev da forma $\\langle abla j^s\\Pi(q),q angle$, $q\\in \\Omega \\subset R^n$ que são s-resistentes. / We will present a class of potential energies $\\Pi \\in C^{\\infty}(\\Omega,R)$ that are s-decidable and that admit auxiliary functions of Cetaev of the form $\\langle abla j^s\\Pi(q),q angle$, $q \\in \\Omega \\subset R^n$ which are s-resistant.
2

Estabilidade de Liapunov e derivada radial / Liapunov stability and radial derivative

Gerard John Alva Morales 31 October 2014 (has links)
Apresentaremos uma classe de energias potenciais $\\Pi \\in C^{\\infty}(\\Omega,R)$ que são s-decidíveis e que admitem funções auxiliares de Cetaev da forma $\\langle abla j^s\\Pi(q),q angle$, $q\\in \\Omega \\subset R^n$ que são s-resistentes. / We will present a class of potential energies $\\Pi \\in C^{\\infty}(\\Omega,R)$ that are s-decidable and that admit auxiliary functions of Cetaev of the form $\\langle abla j^s\\Pi(q),q angle$, $q \\in \\Omega \\subset R^n$ which are s-resistant.

Page generated in 0.0885 seconds