• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Theorems of large deviations for the sums of a random number of independent random variables / Atsitiktinio skaičiaus nepriklausomų dėmenų sumos didžiųjų nuokrypių teoremos

Kasparavičiūtė, Aurelija 21 January 2014 (has links)
The research object of this thesis is the sum of a random number of summands of independent identically distributed random variables with positive weights. Such sums appear as models, for example, in insurance, finance mathematics. Throughout the thesis, it is assumed that the random number of summands is independent of the summands, the summands satisfy S. N. Bernstein's condition, and the random number of summands together with weights satisfy some compatibility conditions. The aim of this dissertation is a normal approximation to a distribution of the sum of a random number of summands of independent identically distributed random variables with positive weights that takes into consideration large deviations in both the Cramer and the power Linnik zones. / Disertacinio darbo tyrimo objektas yra atsitiktinio dėmenų skaičiaus nepriklausomų vienodai pasiskirsčiusių atsitiktinių dydžių su teigiamais svoriniais koeficientais sumos, kurios kaip modelis sutinkamos, pavyzdžiui, finansų, draudos matematikose. Daromos prielaidos, kad atsitiktinis dėmenų skaičius yra nepriklausomas nuo sumos dėmenų, atsitiktiniai dėmenys tenkina apibendrintą S. N. Bernšteino sąlygą, o atsitiktinis dėmenų skaičius kartu su svoriais tenkina tam tikras suderinamumo sąlygas. Disertacijos tikslas yra standartizuotos (centruotos ir normuotos) minėtos atsitiktinės sumos skirstinio aproksimacija standartiniu normaliuoju dėsniu didžiųjų nuokrypių tiek Kramero, tiek ir laipsninėse Liniko zonose.
2

Atsitiktinio skaičiaus nepriklausomų dėmenų didžiųjų nuokrypių teoremos / Theorems of large deviations for the sums of a random number of independent random variables

Kasparavičiūtė, Aurelija 21 January 2014 (has links)
Disertacinio darbo tyrimo objektas yra atsitiktinio dėmenų skaičiaus nepriklausomų vienodai pasiskirsčiusių atsitiktinių dydžių su teigiamais svoriniais koeficientais sumos, kurios kaip modelis sutinkamos, pavyzdžiui, finansų, draudos matematikose. Daromos prielaidos, kad atsitiktinis dėmenų skaičius yra nepriklausomas nuo sumos dėmenų, atsitiktiniai dėmenys tenkina apibendrintą S. N. Bernšteino sąlygą, o atsitiktinis dėmenų skaičius kartu su svoriais tenkina tam tikras suderinamumo sąlygas. Disertacijos tikslas yra standartizuotos (centruotos ir normuotos) minėtos atsitiktinės sumos skirstinio aproksimacija standartiniu normaliuoju dėsniu didžiųjų nuokrypių tiek Kramero, tiek ir laipsninėse Liniko zonose. / The research object of this thesis is the sum of a random number of summands of independent identically distributed random variables with positive weights. Such sums appear as models, for example, in insurance, finance mathematics. Throughout the thesis, it is assumed that the random number of summands is independent of the summands, the summands satisfy S. N. Bernstein's condition, and the random number of summands together with weights satisfy some compatibility conditions. The aim of this dissertation is a normal approximation to a distribution of the sum of a random number of summands of independent identically distributed random variables with positive weights that takes into consideration large deviations in both the Cramer and the power Linnik zones.

Page generated in 0.1228 seconds