• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Active learning under the Bernstein condition for general losses

Shayestehmanesh, Hamid 31 August 2020 (has links)
We study online active learning under the Bernstein condition for bounded general losses and offer a solution for online variance estimation. Our suggested algorithm is based on IWAL (Importance Weighted Active Learning) which utilizes the online variance estimation technique to shrink the hypothesis set. For our algorithm, we provide a fallback guarantee and prove that in the case that R(f*) is small, it will converge faster than passive learning, where R(f*) is the risk of the best hypothesis in the hypothesis class. Finally, in the special case of zero-one loss exponential improvement is achieved in label complexity over passive learning. / Graduate

Page generated in 0.0752 seconds