• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ASSESSMENT OF THERMAL HEATING FOR THE REMOVAL OF CHLORINATED SOLVENTS FROM FRACTURED BEDROCK

RODRIGUEZ, DAVID 25 September 2012 (has links)
The aim of this study was to assess the performance of thermal heating for the removal of chlorinated solvents from fractured rock. The study included a laboratory experimental program, a field pilot study demonstration and a mathematical modeling component. In the laboratory experimental program, thermal heating parameters, such as operational temperature, heating duration, and the corresponding degree of contaminant removal, were evaluated through a series of heating tests. To evaluate the effect of heating temperature and heating duration on the degree of contaminant mass removal, two different heating profiles were utilized during the experiments. Additionally, seven types of rock and two common contaminants were selected to evaluate the effect of thermal heating on different geological media impacted with different chlorinated compounds. In general, results showed that heating duration had the most significant effect on the degree of contaminant mass removal in post-remedy samples. Results showed that a higher porosity in combination with a lower organic content facilitates the removal of chlorinated solvents from the rock matrix. A Thermal Conductive Heating (TCH) pilot test was implemented by TerraTherm, Inc. at the former Naval Air Warfare Center (NAWC) in West Trenton, NJ to assess the performance of TCH for the removal of trichloroethylene (TCE) and daughter products (i.e cis-1,2-dichloroethylene (DCE) and vinyl chloride (VC)) from fractured bedrock. Results showed that treatment removed 318.5 kg of TCE, DCE and VC, from the treatment zone, of which 62.6 kg were recovered from the rock matrix. A total of 63 % TCE, 65.8 % of DCE and 90.4% of VC were removed during heating. Finally, Semi-analytical solutions were derived to evaluate back diffusion in a fractured bedrock environment where the initial condition comprises a spatially uniform, non-zero matrix concentration throughout the domain. It was concluded that the time required to reach a desired fracture pore water concentration is a function of the distance between the point of compliance and the upgradient face of the domain where clean groundwater is inflowing. Hence, shorter distances correspond to reduced times required to reach compliance. / Thesis (Ph.D, Civil Engineering) -- Queen's University, 2012-09-24 11:30:16.52
2

Vliv provedení zateplení stavby pro rodinou rekreaci na výdaje spojené s jejím provozem / Influence of Insulating a Building for Family Holiday on the Expenses Related to its Operation

Hanyk, Tomáš January 2018 (has links)
This diploma thesis deals with the impact of thermal insulation on expenses relateted to the operation of the weekend house. Theoretical part describes options of thermal insulation systems, insulation methodes, describes structural prices and costs. Practical part of this thesis describes heat costs on specific weekend house situated in Karlovy Vary region. Thermal insulations are designed in three different variants. Calculation of costs of every designed insulation systém is included in this thesis. In next part of thesis is calculated return of investment for every designed solution. In conclusion of the diploma thesis are compared impacts of thermal insulation on expenses ralated to the operation of the weekend house.
3

Ultrafast Structural and Electron Dynamics in Soft Matter Exposed to Intense X-ray Pulses

Jönsson, Olof January 2017 (has links)
Investigations of soft matter using ultrashort high intensity pulses have been made possible through the advent of X-ray free-electrons lasers. The last decade has seen the development of a new type of protein crystallography where femtosecond dynamics can be studied, and single particle imaging with atomic resolution is on the horizon. The pulses are so intense that any sample quickly turns into a plasma. This thesis studies the ultrafast transition from soft matter to warm dense matter, and the implications for structural determination of proteins.                    We use non-thermal plasma simulations to predict ultrafast structural and electron dynamics. Changes in atomic form factors due to the electronic state, and displacement as a function of temperature, are used to predict Bragg signal intensity in protein nanocrystals. The damage processes started by the pulse will gate the diffracted signal within the pulse duration, suggesting that long pulses are useful to study protein structure. This illustrates diffraction-before-destruction in crystallography. The effect from a varying temporal photon distribution within a pulse is also investigated. A well-defined initial front determines the quality of the diffracted signal. At lower intensities, the temporal shape of the X-ray pulse will affect the overall signal strength; at high intensities the signal level will be strongly dependent on the resolution. Water is routinely used to deliver biological samples into the X-ray beam. Structural dynamics in water exposed to intense X-rays were investigated with simulations and experiments. Using pulses of different duration, we found that non-thermal heating will affect the water structure on a time scale longer than 25 fs but shorter than 75 fs. Modeling suggests that a loss of long-range coordination of the solvation shells accounts for the observed decrease in scattering signal. The feasibility of using X-ray emission from plasma as an indicator for hits in serial diffraction experiments is studied. Specific line emission from sulfur at high X-ray energies is suitable for distinguishing spectral features from proteins, compared to emission from delivery liquids. We find that plasma emission continues long after the femtosecond pulse has ended, suggesting that spectrum-during-destruction could reveal information complementary to diffraction.

Page generated in 0.0586 seconds