• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Detecting Rails in Images from a Train-Mounted Thermal Camera Using a Convolutional Neural Network

Wedberg, Magnus January 2017 (has links)
Now and then train accidents occur. Collisions between trains and objects such as animals, humans, cars, and fallen trees can result in casualties, severe damage on the train, and delays in the train traffic. Thus, train collisions are a considerable problem with consequences affecting society substantially. The company Termisk Systemteknik AB has on commission by Rindi Solutions AB investigated the possibility to detect anomalies on the railway using a trainmounted thermal imaging camera. Rails are also detected in order to determine if an anomaly is on the rail or not. However, the rail detection method does not work satisfactory at long range. The purpose of this master’s thesis is to improve the previous rail detector at long range by using machine learning, and in particular deep learning and a convolutional neural network. Of interest is also to investigate if there are any advantages using cross-modal transfer learning. A labelled dataset for training and testing was produced manually. Also, a loss function tailored to the particular problem at hand was constructed. The loss function was used both for improving the system during training and evaluate the system’s performance during testing. Finally, eight different approaches were evaluated, each one resulting in a different rail detector. Several of the rail detectors, and in particular all the rail detectors using crossmodal transfer learning, perform better than the previous rail detector. Thus, the new rail detectors show great potential to the rail detection problem.
2

Object Tracking Using Tracking-Learning-Detection inThermal Infrared Video

Stigson, Magnus January 2013 (has links)
Automatic tracking of an object of interest in a video sequence is a task that has been much researched. Difficulties include varying scale of the object, rotation and object appearance changing over time, thus leading to tracking failures. Different tracking methods, such as short-term tracking often fail if the object steps out of the camera’s field of view, or changes shape rapidly. Also, small inaccuracies in the tracking method can accumulate over time, which can lead to tracking drift. Long-term tracking is also problematic, partly due to updating and degradation of the object model, leading to incorrectly classified and tracked objects. This master’s thesis implements a long-term tracking framework called Tracking-Learning-Detection which can learn and adapt, using so called P/N-learning, to changing object appearance over time, thus making it more robust to tracking failures. The framework consists of three parts; a tracking module which follows the object from frame to frame, a learning module that learns new appearances of the object, and a detection module which can detect learned appearances of the object and correct the tracking module if necessary. This tracking framework is evaluated on thermal infrared videos and the results are compared to the results obtained from videos captured within the visible spectrum. Several important differences between visual and thermal infrared tracking are presented, and the effect these have on the tracking performance is evaluated. In conclusion, the results are analyzed to evaluate which differences matter the most and how they affect tracking, and a number of different ways to improve the tracking are proposed.

Page generated in 0.0735 seconds