• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 322
  • 179
  • 33
  • 24
  • 22
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 749
  • 749
  • 242
  • 239
  • 60
  • 59
  • 57
  • 55
  • 53
  • 49
  • 49
  • 49
  • 49
  • 46
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

The Characterization of Dry Powder Magnesium Hydroxide Suspensions Using Sedimentation, Thermal Analysis and Other Techniques

Wang, Yingzhe 28 December 2011 (has links)
No description available.
42

The effect of sample preparation on the characteristics of differential thermal analysis curves of standard clays

Wright, George William. January 1956 (has links)
Call number: LD2668 .T4 1956 W74 / Master of Science
43

The solidification characteristics of titanium aluminides

Butler, Catherine J. January 1995 (has links)
No description available.
44

Combustion and physicochemical properties of raw and thermally treated bamboos

Makwarela, Olive January 2015 (has links)
South Africa is economically vulnerable to climate change because its economy is powered by electricity generated from coal fired power stations. There is a need to reduce the reliance on fossil fuel energy not only because of greenhouse gas emissions but also energy security. Bamboo is touted as a renewable energy source, however, like other woody biomass material, it has poor physicochemical properties and low energy densities. Therefore, the bamboo samples utilized in this study were subjected to thermal pre-treatment methods to improve on their combustion and physicochemical properties. Bamboo samples of 1, 3 and 4+ years old were subjected to torrefaction at 250°C and 280°C as well as low temperature carbonisation at 350°C and 400°C. A standard HGI method was modified during the course of this research for studying the grindability of the raw and treated bamboo material. The fuel properties and combustibility of these raw and thermally treated bamboo materials were then studied using thermogravimetric analysis. The raw bamboo samples exhibited a CV ranging from 17 MJ/kg to 18 MJ/kg, whereas the torrefied samples and the carbonised samples had a CV ranging from 25 MJ/kg to 28 MJ/kg and 28 MJ/kg to 30 MJ/kg, respectively. The 4 year old bamboo carbonised at 400°C had the highest CV of 30.24 MJ/kg. The CV improvement occurred as a result of molecular modification observed through an increase in fixed carbon content from 16 to 74%. The energy yields ranging from 48 to 74% were achieved for the torrefied samples and 44 to 54% for the low temperature carbonised samples, depending on the age of the bamboo sample. At torrefaction temperatures tested, the 4 year old bamboo had the highest mass and energy yield, whereas at carbonisation temperatures, 3 year old bamboo had the highest. The number of differential thermogravimetric peaks was observed to decrease from 2 to 1 as the thermal treatment temperature increased to a carbonisation range (350-400) °C. This can be attributed to the less VM content in the carbonised samples. The raw bamboo and thermally treated bamboo had higher reactivity, lower ignition and burnout temperatures compared to that for coal. Blending of coal with bamboo (raw and thermally treated) appeared to increase the reactivity and lower the ignition temperature during co-firing. The activation energies of the individual fuels ranged from 56 to 289 kJ/mol, using the Ozawa model. Bamboo samples carbonised at 400°C had the highest activation energy, irrespective of age. The activation energy was also the highest when co-firing a blend with the highest proportion of coal. Based on the co-firing tests undertaken in the TG analyser in which a percentage of coal is blended with various proportions of raw and thermally treated bamboo, the results showed that as the percentage of coal in the blend increases there is less interaction or influence of biomass. The role of biomass is to aid with ignition of devolatilization in the coal at lower temperatures. At the carbonisation stage, biomass behave more like coal in principle. It was confirmed in this study that in terms of combustibility, the torrefied bamboo samples had a greater capacity to provide lower ignition and burnout temperatures over the low carbonised bamboo samples utilized, and this might support its application as a source of fuel in an industrial burning combustor. The carbonised 4 year old bamboo appears to be the preferred alternative source fuel to be fired solely in an existing pulverised boiler in South Africa or co-fired with coal due to the carbonised bamboo samples exhibiting the higher CV and more coal-like combustion profile.
45

Caracterização e estudo do comportamento térmico dos adutos flunixina-meglumina e diclofenaco-meglumina/

Cassimiro, Douglas Lopes. January 2010 (has links)
Orientador: Clóvis Augusto Ribeiro / Banca: Adelino Vieira de Godói Netto / Banca: Mirabel Vieira Cerqueira / Resumo: Aduto (do latin Adductus, "atraidos") é o produto de uma adição direta de duas ou mais moléculas distintas, resultando em um produto de reação simples contendo todos os átomos de todos os componentes, com formação de duas ligações químicas e uma redução na multiplicidade da ligação em pelo menos um dos reagentes. Assim, aduto é uma nova espécie química resultante da união direta de moléculas individuais. A meglumina é um carboidrato que se caracteriza pela sua habilidade em formar adutos altamente solúveis em meio aquoso com ácidos carboxílicos. A indústria farmacêutica foi pioneira em explorar essa propriedade, aplicando-a no aperfeiçoamento de medicamentos já existentes. Diante desse contexto, os ácidos carboxílicos envolvidos na formação de adutos com a meglumina apresentam propriedades farmacológicas, mais especificadamente, pertencem à classe dos anti-inflamatórios não esteroidais (AINEs). Com relação à elucidação estrutural dessas espécies, um único trabalho é descrito na literatura o qual contempla o arranjo cristalino da flunixina-meglumina, primeiro aduto dessa classe a ser comercializado. Neste trabalho a flunixina-meglumina e o diclofenaco-meglumina, este último preparado como proposta do estudo, foram caracterizados a partir das técnicas Espectroscopia de Absorção na Região do Infravermelho (IV) e Ressonância Magnética Nuclear (RMN). O comportamento térmico da flunixina-meglumina e do diclofenaco-meglumina no estado sólido foi avaliado mediante as técnicas termoanalíticas Termogravimetria e Termogravimetria Derivada (TG/DTG); Termogravimetria e Análise Térmica Diferencial Simultânea (TG-DTA) e Calorimetria Exploratória Diferencial (DSC). Foi evidenciado que após a temperatura de fusão das respectivas amostras cristalinas, ocorre a formação de um material com comportamento polimérico sugerindo que os adutos... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: An adduct (from the Latin adductus, "drawn toward") is a product of a direct addition of two or more distinct molecules, resulting in a single reaction product containing all atoms of all components, with formation of two chemical bonds and a net reduction in bond multiplicity in at least one of the reactants.Thus, an adduct is a new chemical specie that results from the direct union of individual molecules. Meglumine is a carbohidrate characterized by its capability to form soluble adducts in aquous solutions with carboxilic acids. Pharmaceuticals industry was the first to explore this property, with application to enhance drugs that already exists. In this context, carboxylic acids related to adducts formation with meglumine present pharmacological properties and are included in the class of nonsteroidal anti-inflamatory drugs (NSAIDs). Actually, it is not well understood the structural and chemical characteristics about adducts formed by association of meglumine and carboxylic acids. Only one work in the literature describes the cristaline sctructure formed by flunixin-meglumine adducts, the first compound in this class to go to market. In this work, two adducts (flunixin-meglumine and diclofenac-meglumine) were characterized by Infrared Absortion Spectroscopy (IR) and Nuclear Magnetic Resonance (NMR). Results sugest that the adduct formation of carboxylic acid-meglumine occurs by deprotonation of carboxylic acid and protonation of meglumine. Both adducts in solid state studied in this work were analyzed by Thermogravimetry - Differential Thermal Analysis (TG-DTA) and Differential Scanning Calorimetry (DSC). The results for DSC curves presented two cristaline forms for both adducts. Besides, it was noted that after the melting temperature of the respectives cristalines compounds, they present an self-assembly process wich leads to supramolecular polymers... (Complete abstract click electronic access below) / Mestre
46

Crystal engineering of selected phenolic acids

Amombo Noa, Francoise Mystere January 2014 (has links)
Thesis submitted in fulfilment of the requirements for the degree Master of Technology: Chemistry in the Faculty of Applied Science at the CAPE PENINSULA UNIVERSITY OF TECHNOLOGY 2014 / Crystal engineering based upon acid: base compounds have been studied in this thesis. Selected phenolic acids such as: vanillic acid (VA), phenylacetic acid (PAA), 4-hydroxyphenylacetic acid (HPAA), 3-chloro-4-hydroxyphenylacetic acid (CHPAA), caffeic acid (CFA), p-coumaric acid (pCA), trans-ferulic acid (tFER), 2-phenylpropionic acid (PPA) and 2-phenylbutyric acid (PBA) were the main compounds investigated. These phenolic acids have formed co-crystals/co-crystal hydrates, salts/salt hydrates and hybrid salt-co-crystals with acridine (ACRI), caffeine (CAF), cinchonidine (CIND), isonicotinamide (INM), isonicotinic acid (INA), nicotinamide (NAM), quinidine (QUID), quinine (QUIN), theobromine (THBR), theophylline (THPH) and urea (U). The two racemic compounds 2-phenylpropionic acid (PPA) and 2-phenylbutyric acid (PBA) were used to study chiral discrimination leading to the understanding of separation enantiomers. Compounds were prepared in different solvents (alcohols, ketone and distilled water) to investigate the relationship between solvents used and the crystalline product obtained. (If there is any effect on the crystalline compound obtained by changing the solvent). The structures were elucidated using single crystal X-ray diffraction. Ground products of obtained compounds were characterized by powder X-ray diffraction (PXRD). Thermal analyses like thermogravimetry (TG), differential scanning calorimetry (DSC) and hot stage microscopy (HSM) were used for the determination of thermal character of the new compounds. IR was also performed to characterize the new compounds. Non-isothermal TG was utilised to obtain kinetic parameters for the water and the methanol release in (pCA−)(QUIN+)•pCA•MeOH•H2O. A selective experiment was done in which quinidine and quinine were used to compete between selected phenolic acids (PAA and HPAA). viii The comparison of the crystal structures determined showed that, changing the phenolic acid while using the same co-crystal former has a significant effect on the type of compounds obtained. The obtained crystal structures were either co-crystal/co-crystal hydrates, salts/salt hydrates or hybrid salt-co-crystals which formed network via means of supramolecular interactions.
47

Thermal and structural performance of tow-placed, variable stiffness panels /

Wu, Kingsley Chauncey, January 1900 (has links)
Author's thesis (Ph. D.)--Technische Universiteit Delft, 2006. / Includes bibliographical references.
48

Systematic approach for chemical reactivity evaluation

Aldeeb, Abdulrehman Ahmed 30 September 2004 (has links)
Under certain conditions, reactive chemicals may proceed into uncontrolled chemical reaction pathways with rapid and significant increases in temperature, pressure, and/or gas evolution. Reactive chemicals have been involved in many industrial incidents, and have harmed people, property, and the environment. Evaluation of reactive chemical hazards is critical to design and operate safer chemical plant processes. Much effort is needed for experimental techniques, mainly calorimetric analysis, to measure thermal reactivity of chemical systems. Studying all the various reaction pathways experimentally however is very expensive and time consuming. Therefore, it is essential to employ simplified screening tools and other methods to reduce the number of experiments and to identify the most energetic pathways. A systematic approach is presented for the evaluation of reactive chemical hazards. This approach is based on a combination of computational methods, correlations, and experimental thermal analysis techniques. The presented approach will help to focus the experimental work to the most hazardous reaction scenarios with a better understanding of the reactive system chemistry. Computational methods are used to predict reaction stoichiometries, thermodynamics, and kinetics, which then are used to exclude thermodynamically infeasible and non-hazardous reaction pathways. Computational methods included: (1) molecular group contribution methods, (2) computational quantum chemistry methods, and (3) correlations based on thermodynamic-energy relationships. The experimental techniques are used to evaluate the most energetic systems for more accurate thermodynamic and kinetics parameters, or to replace inadequate numerical methods. The Reactive System Screening Tool (RSST) and the Automatic Pressure Tracking Adiabatic Calorimeter (APTAC) were employed to evaluate the reactive systems experimentally. The RSST detected exothermic behavior and measured the overall liberated energy. The APTAC simulated near-adiabatic runaway scenarios for more accurate thermodynamic and kinetic parameters. The validity of this approach was investigated through the evaluation of potentially hazardous reactive systems, including decomposition of di-tert-butyl peroxide, copolymerization of styrene-acrylonitrile, and polymerization of 1,3-butadiene.
49

Reflective cracking of shear keys in multi-beam bridges

Sharpe, Graeme Peter 02 June 2009 (has links)
Multi-beam bridges made from precast concrete box girders are one of the most common bridge types used in the United States. One problem that affects these bridges is the development of longitudinal or reflective cracks on the road surface because of failure of the shear keys. Some states have attempted to correct this problem by redesigning the shear key or adding post-tensioning, but the problem persists in many new bridges. The purpose of this study is to investigate why these shear key failures are occurring. This project studies two types of box girder designs, the common Precast/Prestressed Concrete Institute (PCI) box girder bridges and the Texas Department of Tranportation (TxDOT) box girder bridge. In the past, reflective cracking has occurred in bridges of both types. The analysis procedure involves finite element analyses of bridge models with realistic support and loading conditions, and comparing the PCI and TxDOT bridges. The results indicate that both PCI and TxDOT box girder have sufficient strength to resist cracking from vehicular loads, but uneven temperature changes and shrinkage strains cause high tensile stresses in the shear key regions and lead to reflective cracking. The analyses showed the highest stresses were often times near the supports, rather than at midspan. Past studies have proposed using larger composite deck slabs, transverse posttensioning, or full-depth shear keys to prevent shear key failure. Composite slabs were the most effective way to reduce high stresses in shear keys, and were effective for all loading cases considered. Post-tensioning and full-depth keys also showed a reduction in shear key stresses, but were less effective.
50

The Study of the Thermal and Stress Analysis of the Disc Brake of Motorcycle

Lin, Jine-Chai 03 July 2001 (has links)
The main purpose of this study is to simulate and analyze the temperature and contact pressure of the disc brake plate of a motorcycle during braking by the finite element method. By utilizing the software package Mentate and Marc which are signified with drawing and construction of the brake model to do the analysis of thermal and contact problem. In accordance with the result of analysis, the researcher discussed and compared the three-dimensional model and the two dimensional axial symmetrical model for the temperature, pressure and stress distribution of the brake. Finally, the researcher made some suggestions for the improvement of the mechanism of disc brake plate of a motorcycle.

Page generated in 0.0592 seconds