• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 263
  • 80
  • 46
  • 45
  • 34
  • 10
  • 8
  • 8
  • 7
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 639
  • 639
  • 153
  • 110
  • 101
  • 98
  • 97
  • 78
  • 75
  • 61
  • 50
  • 46
  • 46
  • 45
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Medidas de permeabilidade e de condutividade termica efetiva em isolamentos termicos tipo fibra

KASSAR, EDSON 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:30:57Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:58:17Z (GMT). No. of bitstreams: 1 01386.pdf: 5820506 bytes, checksum: 6308c9f7dae1ed503a75ddfa5a2542db (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
102

Avaliação do congelamento de solução modelo por condutividade termica / Freezing evaluation of model solution by thermal conductivity

Monzon Davila, Lena Soledad 31 July 2007 (has links)
Orientador: Vivaldo Silveira Junior / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos / Made available in DSpace on 2018-08-08T21:44:28Z (GMT). No. of bitstreams: 1 MonzonDavila_LenaSoledad_M.pdf: 1297499 bytes, checksum: 0150b5616aa8630cf25a2830c9e27b00 (MD5) Previous issue date: 2007 / Resumo: As propriedades termofisicas dos alimentos são requeridas para o cálculo de tempo de processamento em projetos de equipamentos para a indústria de alimentos. Os processos de congelamento exigem dados precisos das propriedades térmicas do produto, tais como condutividade térmica, fração de gelo, calor específico e entalpia. A necessidade do conhecimento do comportamento destas propriedades tem levado ao desenvolvimento de alguns modelos matemáticos para suas predições. A condutividade térmica dos alimentos é uma propriedade fortemente dependente da composição química e da temperatura do alimento. Neste trabalho compararam-se os resultados experimentais de condutividade térmica de soluções modelo congeladas em três diferentes velocidades de congelamento, utilizando o método da sonda linear de aquecimento, com os obtidos pelo modelo matemático ¿Maxwell-Eucken¿ ou disperso como função da fração de gelo contida nos alimentos. Foi obtida uma divergência com o modelo por não considerar a velocidade de congelamento. Determinou-se que a condutividade térmica é uma propriedade termofísica diretamente proporcional ao aumento da velocidade de congelamento Os valores de condutividade térmica das amostras foram calculados através da inclinação obtida da regressão linear determinada pelo perfil do logaritmo natural do tempo versus temperatura. Os resultados da condutividade térmica foram correlacionados com as velocidades de congelamento e com a fração de gelo, indicando sua dependência devido à dispersão do gelo no produto / Abstract: The thermophysical properties of foods are required to calculate freezing time in the equipments design for foods industry. Freezing process demand exacts data of product thermal properties, as thermal conductivity, ice fraction, specific heat and enthalpy. The necessity of knowledge of the behavior of these properties has led to development of some mathematical models for their prediction. Thermal conductivity of foods is a property strongly dependent of chemical composition and food temperature. In this work, the experimental thermal conductivity results of model solutions freezing in three different velocities using line source probe method have been compared with the results obtained by the Maxwell-Eucken mathematical model or disperse as a function of ice fraction contained in foods, getting a divergence of the model for not considerer freezing velocities. Model solutions were frozen in three different velocities of freezing. Was determined that the thermal conductivity is a thermophysical property directly proportional to the increase of the freezing velocity. The thermal conductivity values of samples were calculated by the angular coefficient obtained by the linear regression which was determinate by the time natural logarithmic profile versus temperature. The thermal conductivity results were correlated with freezing velocities and ice fraction, indicating its dependence due to ice dispersion in the product / Mestrado / Mestre em Engenharia de Alimentos
103

Heat conductivity experiments below 1°K using helium 3 cryogenics

Davey, G. January 1965 (has links)
No description available.
104

The thermal conductivity of paramagnetic crystals at low temperatures

Harley, R. T. January 1968 (has links)
No description available.
105

Transport and magnetic properties of superconductors

Sousa, João A. B. M. e January 1968 (has links)
No description available.
106

Thermal conductivity of metals at low temperatures

Rao, K. Venkat January 1967 (has links)
No description available.
107

Electrical and thermal properties of yttria-stabilised zirconia (YSZ)- based ceramic materials

Yang, Fan January 2011 (has links)
Electrical and thermal conductivities of the yttria-stabilised zirconia/alumina (YSZ/Al2O3) composites and the yttria-zirconia-ceria (YSZ-CeO2) solid solutions are studied in this thesis. The electrical conductivity of the YSZ/Al2O3 composites decreases with an increase in the volume fraction of Al2O3 and exhibits typical percolation behaviour. The electrical conductivity of the YSZ/Al2O3 interface is higher than that of the YSZ grain boundary, but lower than that of the YSZ grains. The thermal conductivity of the YSZ/Al2O3 composites increases with an increase in the Al2O3 volume fraction, and it can be fitted well to the Maxwell theoretical model, which indicates the absence of obvious interfacial thermal resistances in the composites. The low interfacial thermal resistance of the YSZ/Al2O3 interface is due to the 'clean' and coherent nature of the YSZ/Al2O3 interface, along with the small difference between the elastic properties of YSZ and Al2O3. The electrical conductivity of the [(ZrO2)1-x(CeO2)x]0.92(Y2O3)0.08 (0 ≤ x ≤ 1) solid solutions has a 'V-shape' variation as a function of the mole ratio of CeO2 (x). In the ZrO2-rich region (x < 0.5), CeO2 doping increases the concentration of defect associates which limits the mobility of the oxygen vacancies; in the CeO2-rich region (x > 0.5), the increase of x increases the lattice parameter, which enlarges the free channel for oxygen vacancy migration. A comparison of the YSZ-CeO2 solid solutions with the YSZ-HfO2 series indicates the ionic radius of the tetravalent dopant determines the composition dependence of the ionic conductivity of the solid solutions.The thermal conductivity of the [(ZrO2)1-x(CeO2)x]0.92(Y2O3)0.08 (0 ≤ x ≤ 1) solid solutions also has a 'V-shape' variation as a function of the mole ratio of CeO2 (x), which indicates an incorporation of Zr4+ and Ce4+ can effectively decrease the thermal conductivity of the end members YSZ and yttria-doped ceria (YDC). In the ZrO2-rich region (0 ≤ x ≤ 0.5), the thermal conductivity is almost temperature independent; in the CeO2-rich region (0.5 ≤ x ≤ 1), it decreases obviously with increasing temperature. By calculating the phonon scattering coefficients, it is concluded that the composition dependence of the thermal conductivity in the ternary solid solutions is dominated by the mass difference between Zr and Ce at the cation sites, whereas the temperature dependence is determined by the order/disorder of oxygen vacancies at the anion sites.
108

Influence of Porosity on the Flame Speed in Gasless Bimetallic Reactive Systems

Akbarnejad, Hesam January 2013 (has links)
Self-propagating High-temperature Synthesis (SHS) is the synthesis of solid materials by a reaction wave propagating into the initial reactants, typically two metals, which can alloy exothermically. Typically, experiments are performed with the reactants in powder form, with relatively low density. Recent experiments by Bacciochini et al. revealed much larger flame speeds in densified powders near TMD (theoritical maximum density), obtained by the cold spray process. The present thesis investigates why the flame speed increases dramatically with an increase in density of the powders. The investigation rests on the analytical model formulated by Makino by controlling how the variables are affected by changes in density. Flame speed measurements were performed in mixtures of nickel (Ni) and aluminum (Al) at different initial densities. The density was varied by controlling the cold-pressing of the samples inside metallic channels and tubes. Experiments were also performed in ball-milled powders, in order to permit comparison with the experiments performed by Bacciochini in these mixtures at nearly maximum densities. The measurements revealed that the flame speed increases with the initial density, with a discontinuous transition occurring at approximately 60% theoretical maximum density (TMD). This transition also corresponds to the point where the powders deform plastically during the compaction process, suggesting that the intimate contact between the particles is responsible for the flame speed increase. The flame speed dependence on powder density is attributed to the changes in the heat conductivity of the pressed powders. At high densities, where the powders have plastically deformed, the continuous structure yields conductivities close to the idealized solid matrix. At these high densities, the conductivity was modeled using the Effective Medium Theory (EMT). Analytical predictions of the flame speed, using available thermo-chemical data for the Al-Ni system were found in good agreement with the present experiments at high densities. At low densities, since Al-Ni is a mixture of loose powders, the EMT model is no longer applicable. Thus, the thermal conductivity was experimentally measured and then was fitted using the semi-empirical model suggested by Aivazov. Using this data, Makino's model predicts the correct flame speed dependence observed experimentally. The present thesis has thus established that the dependence of flame speed on density is due mainly to the changes in the structure and thermal conductivity of the powders.
109

Modelling Thermal Conductivity of Porous Thermal Barrier Coatings for High-Temperature Aero Engines

Ghai, Ramandeep Singh January 2017 (has links)
Thermal Barrier Coatings (TBC) are used to shield hot sections of gas turbine engines, helping to prevent the melting of metallic surfaces. TBC is a sophisticated layered system that can be divided into top coat, bond coat, and the super-alloy substrate. The highly heterogeneous microstructure of the TBC consists of defects such as pores, voids, and cracks of different sizes, which determine the coating’s final thermal and mechanical properties. The service lives of the coatings are dependent on these parameters. These coatings act as a defensive shield to protect the substrate from oxidation and corrosion caused by elevated temperatures. Yttria Stabilized Zirconia (YSZ) is the preferred thermal barrier coating for gas turbine engine applications. There are a certain number of deposition techniques that are used to deposit the thermal coating layer on the substrate; commonly used techniques are Air Plasma Sprayed (APS) or Electron Beam Physical Vapour Deposition (EB-PVD). The objective of this thesis is to model an optimized TBC that can be used on next-generation turbine engines. Modelling is performed to calculate the effective thermal conductivity of the YSZ coating deposited by EB-PVD by considering the effect of defects, porosities, and cracks. Bruggeman’s asymmetrical model was chosen as it can be extended for various types of porosities present in the material. The model is used as an iterative approach of a two-phase model and is extended up to a five-phase model. The results offer important information about the influence of randomly oriented defects on the overall thermal conductivity. The modelled microstructure can be fabricated with similar composition to have an enhanced thermal insulation. The modelling results are subsequently compared with existing theories published in previous works and experiments. The modelling approach developed in this work could be used as a tool to design the porous microstructure of a coating.
110

The improvement of thermal and mechanical properties of La2Zr2O7-based pyrochlores as high temperature thermal barrier coatings

Wang, Yanfei January 2013 (has links)
To fully exploit the strengths of La2Zr2O7 pyroclores and promote them as a next-generation thermal barrier coating (TBC), the improvements of their thermally insulating property and fracture toughness are studied in this thesis. A strong phonon scattering source, rattlers, is found in Y3+-doped La2Zr2O7 pyrochlores. Rattlers dramatically flatten k (thermal conductivity)-T curves, or even make k approach the amorphous limit. The presence of rattlers is strongly dependent on (1) oversized atomic cages that are formed in pyrochlores; and (2) the occupation of smaller guest ions in those oversized cages. To maximize the rattling effect, In3+/Sc3+ ions that are much smaller than Y3+ are introduced to the La2Zr2O7 lattice. As envisaged, the smaller ions in the oversized lattice voids make k glass-like at a much lower doping content. Nevertheless, they are still not effective in reducing the high temperature plateau kmin. Instead, oxygen vacancies are very effective in reducing kmin, because they generate an electrostatic repulsion force among cations surrounding them, resulting in stronger lattice anharmonicity and weaker bonds. The plateau kmin is reduced dramatically by the filling of the B-sites in La2Zr2O7 with a 21% larger (and 50% heavier) Ce4+ guest ion rather than a 96% heavier (but similar-sized) Hf4+ ion, suggesting that a large absolute size of substitutional atoms is more effective in reducing kmin than a heavy absolute mass. This is because: (1) kmin is proportional to (E/M)0.5 (where E is the elastic modulus and M is the average atomic mass); (2) a larger size of guest ions tends to produce a weaker ionic bond and consequently, a lower E; and (3) the changing extent of E by introducing larger guest ions is much greater than that of M induced by adding heavier ones. Lastly, the fracture toughness (KIc) has been increased by dispersing the tetragonal 3 mol% Y2O3-stabilized zirconia (t-3YSZ) particulates in the La2Zr2O7 (LZ) matrix. The tendency of the dispersive t-3YSZ second phases transforming to monoclinic (m) phases strongly depends on the volume fraction introduced. For samples made from equilibrium route, they are toughened by phase transformations within the dispersive t-3YSZ second phases and a crack shielding effect arising from the residual compressive stress within the LZ matrix. An anticipated increase of KIc from ferroelastic toughening together with the residual compressive stress toughening highlights a potential to improve coating durability by depositing t’-3YSZ/LZ composite TBCs by the non-equilibrium route.

Page generated in 0.0979 seconds