• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermal contact resistance in micromoulding.

Gonzalez Castro, Gabriela, Babenko, Maksims, Bigot, S., Sweeney, John, Ugail, Hassan, Whiteside, Benjamin R. 12 1900 (has links)
yes / This work outlines a novel approach for determining thermal contact resistance (TCR) in micromoulding. The proposed technique aims to produce TCR predictions with known confidence values and combines experimental evidence (temperature fields and contact angle measurements) with various mathematical modelling procedures (parametric representation of surfaces, finite element analysis and stochastic processes). Here, emphasis is made on the mathematical aspects of the project. In particular, we focus on the description of the parametric surface representation technique based on the use of partial differential equations, known as the PDE method, which will be responsible for characterizing and compressing micro features in either moulds or surface tools. / EPSRC
2

Simultaneous Studies Of Electrical Contact Resistance And Thermal Contact Conductance Across Metallic Contacts

Misra, Prashant 10 1900 (has links)
Contact resistance is the most important and universal characteristic of all types of electrical and thermal contacts. Accurate measurement of contact resistance is important, because it serves as a measure for judging the performance and operational life span of contacts. Rise in contact temperature is one of the major factors that pose a big threat to the stability of electrical contacts. Dissipation of heat by solid conduction through a contact interface is governed by its thermal contact conductance (TCC). This emphasizes the need to study the TCC of an electrical contact along with its electrical contact resistance (ECR). Simultaneous measurement of ECR and TCC is important for understanding the interconnection between these two quantities and the possible influence of one over another. Real time experimental data and analytical correlations can be extremely helpful in developing electrical contacts with improved thermal management capabilities. As a part of the experimental investigation, a test facility has been developed for making simultaneous measurement of ECR and TCC across flat contacts. The facility has the capability of measuring ECR and TCC over a wide range of operating parameters, such as contact pressure, contact temperature, interstitial gaseous media, ambient pressure, etc. It is also capable of determining the electrical resistivity and thermal conductivity of materials as a function of temperature, which is very helpful in analyzing the generated contact resistance data. Using this facility, simultaneous ECR and TCC measurements are made across bare and gold plated contacts of OFHC Cu (oxygen free high conductivity copper) and brass. Simultaneous ECR and TCC measurements are made on nominally flat contacts in the contact pressure range of 0 – 1 MPa and the interface temperature range of 20 – 120 °C. Effect of contact pressure and interface temperature on ECR and TCC is studied on bare and gold coated contacts in vacuum, N2, Ar, and SF6 environments. TCC strongly depends on the thermophysical properties of the interstitial media and shows a significant enhancement in gaseous media, because of the increased interfacial gap conductance compared to vacuum. The gas pressure is varied in the range of 1 – 2.6 bar to study its effect on the gap conductance at different contact pressures and interface temperatures. Minor increase in the ECR observed in gaseous media is found to be independent of the properties of the media. Experimental results indicated that ECR depends on the gas pressure as well as on the applied contact load. Effect of gold coating and its thickness on the ECR and TCC across OFHC Cu and brass contacts is studied. Measurements on electroplated gold specimens having different gold layer thicknesses (0.1, 0.3, and 0.5 µm) indicated that ECR decreases and TCC increases with increasing gold coating thickness. Effect of gold coating on the substrate properties, contact surface tomography, and microhardness is analyzed and correlated to the observed behavior of ECR and thermal gap conductance. An attempt is made to understand and quantify the changes in the contact surface characteristics due to contact loading and heating, by measuring various surface topography parameters before and after the experimentation. Effect of thermal stresses (generated due to temperature variations) on ECR and TCC is studied and inclusion of an experimentally measured temperature dependent load correction factor is suggested in the theoretical models to take into account the effect of thermal stresses in contact assemblies.
3

Caractérisation thermomécanique des lignes de transmission et des collecteurs dans les tubes à ondes progressives / Thermomechanical characterization of the transmission lines and the collector in the traveling wave tube

Chbiki, Mounir 10 December 2014 (has links)
Durant ces quarante dernières années, les Tubes à Ondes Progressives (TOP) n’ont cessé de se développer, orienté par la demande croissante des nouvelles applications (Internet Haut débit, TV HD…). Cette demande croissante en fréquence et en puissance se traduit par des problèmes d’échauffement thermique. En effet, l’augmentation de la puissance de sortie augmente la puissance dissipée. De plus, la montée en fréquence nécessite une diminution des dimensions, qui conduit tout logiquement à des densités de puissance plus importantes. Cette chaleur produite doit être évacuée par des petites surfaces de contact qui dépendent fortement du type d’assemblage. Cet échauffement thermique implique également des changements du comportement mécanique. Dans ce travail de thèse, le point principal a été l’étude du comportement des interfaces dans les tubes à ondes progressive. Il est question d’étudier les interfaces thermomécaniques produites lors de l'assemblage (frettage à chaud). L’objectif est de fournir un modèle de détermination de la température d’hélice en fonctionnement. Compte tenu des configurations de fonctionnement (Vide, haute tension, petite dimension…) une mesure directe n’est pas réalisable. Néanmoins plusieurs méthodes de mesure indirectes ont été investiguées afin de trouver la plus appropriée. Cette étude porte dans un premier temps sur les lignes de transmissions puis sur les collecteurs des TOPs. Nous avons réalisé un modèle analytique purement thermique permettant d’identifier rapidement l’impédance thermique des dispositifs. Une mesure de RTC et une coupe métallographique déterminant les surfaces de contact alimente ce modèle afin de lui donner une meilleure précision. Un modèle élément finis 2D nous permet d’identifier une pression moyenne de contact afin d’utiliser la RTC correspondante.L’impédance thermique, nous permet de trouver la température d’hélice en indiquant la puissance dissipée dans la ligne. / During these last forty years traveling Waves tubes did not stop developing directed by the increasing request of the new applications (High-speed Internet, TV HD). This increasing request in frequency and in power is translated by thermal heating problems. Indeed, the more the output power will be high, the more there will be of the dissipated power, with smaller and smaller size. This leads logically to bigger and bigger power densities. This produced heat must be evacuated by small contact areas, which depend strongly on the type of assembly. This thermal heating also involves changes of the mechanical behaviour. The principal point will be the study of the behaviour of the interfaces in traveling waves tubes. Thesis work, we study the thermal and mechanical interfaces produced during a hot shrinking. Goal of this work is to supply a numerical or analytical model of helix temperature determination with functioning. Considering the configurations of functioning (Vacuum, high-voltage, small dimension) a direct measure is not impossible. Nevertheless several indirect measure methods were investigated to find the most appropriate. This study concerns at first the transmissions lines then the collectors of TOPS. We realized an analytical thermal model allowing to identify quickly the thermal impedance of devices. A thermal contact resistance measurement and a metallographic cutting determining the contact areas feeds this model to give it a better precision. A 2D finite element allows us to identify an average pressure of contact to use the corresponding RTC. The thermal resistance, allows us to find the helix temperature by indicating the power dissipated in the line.

Page generated in 0.0785 seconds