• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Termisk cyklisk utmattning studie av Gd2Zr2O7 / YSZ flerskikts termiska barriärbeläggningar / Thermal cyclic fatigue study of Gd2Zr2O7/ YSZ multi-layered thermal barrier coatings

Gokavarapu, Naga Sai Pavan Rahul January 2015 (has links)
From many years YSZ is used as the top coat material for TBC's, as it has good phase stability up to 1200°C, higher fracture toughness, lower thermal conductivity, erosion resistance & higher coefficient of thermal expansion. But, it has a drawbacks at high temperature such as sintering and transformation of phases. For this reason new ceramic materials with pyrochlores crystal structure such as Gd2Zr2O7 are being considered as it has high melting points, phase stability, lower thermal conductivity and CMAS resistance. But it has low fracture toughness when compared to YSZ. In order to take advantage of low thermal conductivity and high thermal stability of gadolinium zirconate and avoiding the drawbacks of low coefficient of thermal expansion and low toughness using YSZ, a double/multi-layer coatings approach is being used. Therefore, multi-layer TBCs are sprayed and compared with single layer coating in this work. These coatings are processed by suspension plasma spraying. For single layer coating YSZ is used, for double layer coating YSZ as the intermediate coating and Gd2Zr2O7 as the top coat is used. Additionally, a triple layer coating system comprising YSZ, Gd2Zr2O7 and dense Gd2Zr2O7 as top coat is also sprayed. The as sprayed coatings are characterized for microstructure analysis using optical microscope and scanning electron microscope (SEM), elemental analysis of TGO using Energy-Dispersive Spectrometer (EDS). XRD analysis was done to identify various phases in the coating. Porosity analysis using Archimedes principle was carried out. Thermal cyclic fatigue (TCF) test of the sprayed coatings was carried out at 1100°C. Failure analysis of the TCF specimens was carried out using SEM/EDS. TCF results showed that the triple layer coatings (dense Gd2Zr2O7/Gd2Zr2O7/YSZ) had higher thermal cyclic fatigue life and lower TGO thickness when compared to single layer (YSZ) and double layer (Gd2Zr2O7/YSZ) TBCs.
2

Skräddad mikrostruktur av gadolinium zirkonat baserade värmebarriärbeläggningar som utsätts för termisk cyklisk utmattning / Tailored microstructure of Gadolinium Zirconate based thermal barrier coatings subjected to thermal cyclic fatigue

Hamatuli, Cliff January 2017 (has links)
Yttria Stabilized Zirconia (YSZ) is the standard ceramic top coat material used for TBC application. Above 1200°C, issues such as CMAS (Calcium Magnesium Alumino Silicates) infiltration susceptibility, phase instability and high sintering rates limits its long durability. Therefore, new materials which can overcome these challenges without compromising the other requirements for TBCs are highly desirable. Gadolinium zirconate is one such material which has shown promising results for CMAS infiltration resistance. In this work, a relatively new TBC processing route, suspension plasma spray (SPS) has been employed to deposit gadolinium zirconate based TBCs. The primary aim of this study was to deposit two different coating systems (layered and composite) of gadolinium zirconate and YSZ composition using SPS technique and evaluate their thermal cyclic fatigue life performance. The layered system was a triple layered TBC with YSZ as the base layer, relatively porous GZ as the intermediate layer and dense GZ as the top layer. The blended TBC system comprised of a thin YSZ layer, an intermediate GZ+YSZ thick layer and dense GZ top layer. In the thermal cyclic fatigue test at 1100°C and 1200°C, it was observed that blended TBC had a lower thermal cyclic life than the layered TBC. It was shown that SPS is a promising technique to deposit columnar microstructure TBCs.
3

Environmental Barrier Coatings to protect Ceramic Matrix Composites in next-generation jet engines

Parmar, Shivang January 2023 (has links)
Gas turbine engine efficiency needs to be raised in order to decrease fuel consumption, greenhouse gas emissions, and expenses. Efficiency may be improved in two ways: by reducing engine weight and raising intake temperatures. At intake temperature, conventional nickel-based alloys are already on the verge of failure, meaning there is a need and demand of materials which can withstand higher temperatures. Silicon Carbide Ceramic Matrix Composites (SiC CMCs) are being investigated as a potential replacement for superalloys due to their superior physical properties, such as their low weight and high melting point (approximately one-third of superalloys' weight). However, using SiC CMCs has a serious disadvantage. The mass recession of the SiC is caused by the volatilization of silicon hydroxide, which is caused by oxidation and reactivity with water vapor under the working conditions of gas turbine engines. Therefore, a shielding layer is used to prevent oxidation of the SiC CMCs. This protective coating (EBC) goes by the name of Environmental Barrier Coating. Thermal spray techniques such as atmospheric plasma spray and suspension plasma spray, which employ powder as the feedstock, are used to deposit EBC on SiC CMCs. For EBC to perform well, the coating must be crystalline, reasonably thick to sustain harsh environment, and devoid of cracks. EBC was deposited in order to look at how the spray parameters affected the microstructure. SEM pictures were used to quantify the coating's porosity and the severity of the cracks. To investigate the production of thermally grown oxide (TGO) in the coating and substrate and check how EBCs perform under thermal cyclic fatigue loading, a thermal cyclic fatigue test was conducted. The XRD analysis is performed to ascertain the proportion of crystalline and amorphous phases in the coating, which unfortunately is still in the process to be completed. In the as-sprayed coating samples we can see that when there are more amount and larger pores, we see less number of cracks and vice versa. The effect of spray parameters can be seen on the coatings. Comparing to SPS trial 1, the SPS trial 2 coatings are denser with less number of cracks and has good adhesion. Still the SPS trial 2 coating did not achieve better microstructure in terms of density, and cracks compared to the APS coatings but further looking into the parameters, more desirable coatings can be achieved. After TCF testing, a layer of TGO was seen at the bond coat/topcoat interface, and there was no failure of the coating seen.

Page generated in 0.091 seconds