• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental Design for Estimating Electro-Thermophysical Properties of a Thermopile Thermal Radiation Detector

Barreto, Joel 10 August 1998 (has links)
As the Earth's atmosphere evolves due to human activity, today's modern industrial society relies significantly on the scientific community to foresee possible atmospheric complications such as the celebrated greenhouse effect. Scientists, in turn, rely on accurate measurements of the Earth Radiation Budget (ERB) in order to quantify changes in the atmosphere. The Thermal Radiation Group (TRG), a laboratory in the Department of Mechanical Engineering at Virginia Polytechnic Institute and State University, has been at the edge of technology designing and modeling ERB instruments. TRG is currently developing a new generation of thermoelectric detectors for ERB applications. These detectors consist of an array of thermocouple junction pairs that are based on a new thermopile technology using materials whose electro-thermophysical properties are not completely characterized. The objective of this investigation is to design experiments aimed at determining the electro-thermophysical properties of the detector materials. These properties are the thermal conductivity and diffusivity of the materials and the Seebeck coefficient of the thermocouple junctions. Knowledge of these properties will provide fundamental information needed for the development of optimally designed detectors that rigorously meet required design specifications. / Master of Science
2

Heat Transfer Issues in Thin-Film Thermal Radiation Detectors

Barry, Mamadou Yaya 22 December 1999 (has links)
The Thermal Radiation Group at Virginia Polytechnic Institute and State University has been working closely with scientists and engineers at NASA's Langley Research Center to develop accurate analytical and numerical models suitable for designing next-generation thin-film thermal radiation detectors for earth radiation budget measurement applications. The current study provides an analytical model of the notional thermal radiation detector that takes into account thermal transport phenomena, such as the contact resistance between the layers of the detector, and is suitable for use in parameter estimation. It was found that the responsivity of the detector can increase significantly due to the presence of contact resistance between the layers of the detector. Also presented is the effect of doping the thermal impedance layer of the detector with conducting particles in order to electrically link the two junctions of the detector. It was found that the responsivity and the time response of the doped detector decrease significantly in this case. The corresponding decrease of the electrical resistance of the doped thermal impedance layer is not sufficient to significantly improve the electrical performance of the detector. Finally, the "roughness effect" is shown to be unable to explain the decrease in the thermal conductivity often reported for thin-film layers / Master of Science
3

Optical Analysis of a Linear-Array Thermal Radiation Detector for Geostationary Earth Radiation Budget Applications

Sanchez, Maria Cristina 12 March 1998 (has links)
The Thermal Radiation Group, a laboratory in the Department of Mechanical Engineering at Virginia Polytechnic Institute and State University, is currently working to develop a new technology for thermal radiation detectors. The Group is also studying the viability of replacing current Earth Radiation Budget radiometers with this new concept. This next-generation detector consists of a thermopile linear array thermal radiation detector. The principal objective of this research is to develop an optical model for the detector and its cavity. The model based on the Monte-Carlo ray-trace (MCRT) method, permits parametric studies to optimize the design of the detector cavity and the specification of surface optical properties. The model is realized as a FORTRAN program which permits the calculation of quantities related to the cross-talk among pixels of the detector and radiation exchange among surfaces of the cavity. An important capability of the tool is that it provides estimates of the discrete Green's function that permits partial correction for optical cross-talk among pixels of the array. / Master of Science

Page generated in 0.149 seconds