• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Alkali Metal C1-C12 n-alkanoates

Bui, Ly, H Unknown Date
No description available.
2

LHCb Upstream Tracker box : Thermal studies and conceptual design

Mårtensson, Oskar January 2016 (has links)
The LHC (Large Hadron Collider) will have a long shut down in the years of 2019 and 2020, referred to as LS2. During this stop the LHC injector complex will be upgraded to increase the luminosities, which will be the first step of the high luminosity LHC program (which will be realized during LS3 that takes place in 2024-2026). The LHCb experiment, whose main purpose is to study the CP-violation, will during this long stop be upgraded in order to withstand a higher radiation dose, and to be able to read out the detector at a rate of 40MHz,compared to 1MHz at present. This change will improve the trigger efficiency significantly. One of the LHCb sub-detectors the Trigger Tracker (TT), will be replaced by a new sub-detector called UT. This report presents the early stage design (preparation for mock-up building) of the box that will be isolating the new UT detector from the surroundings and to ensure optimal detector operation. Methods to fulfill requirements such as light and gas tightness, Faraday-cage behavior and condensation free temperatures, without breaking the fragile beryllium beam pipe, are established. / LHC (Large Hadron Collider) kommer under åren 2019-2020 att ha ett längre driftstopp. Under detta driftstopp så kommer LHC's injektionsanordningar att uppgraderas för att kunna sätta fler protoner i circulation i LHC, och därmed öka antalet partikelkollisioner per tidsenhet. Denna uppgradering kommer att vara första steget i "High Luminocity LHC"-programmet som kommer att realiseras år 2024-2026. LHCb-experimentet, vars främsta syfte är att studera CP-brott, kommer också att uppgraderas under stoppet 2019-2020. Framför allt så ska avläsningsfrekvensen ökas från dagens 1MHz till 40MHz, och experimentet ska förberedas för de högre strålningsdoser som kommer att bli aktuella efter stoppet 2024-2026. En av LHCb's deldetektorer, TT detektorn, kommer att bytas ut mot en ny deldetektor som kallas UT. Den här rapporten presenterar den förberedande designen av den låda som ska isolera UT från dess omgivning och försäkra optimala förhållanden för detektorn. Kraven på den isolerande lådan och tillvägagångssätt för att uppfylla dessa krav presenteras. / LHCb, LS2 and LS3 Upgrade
3

Synthesis, adsorption and catalysis of large pore metal phosphonates

Pearce, Gordon M. January 2010 (has links)
The synthesis and properties of metal phosphonates prepared using piperazine-based bisphosphonic acids have been investigated. The ligands N,N’-piperazinebis(methylenephosphonic acid) (H₄L), and the 2-methyl (H₄L-Me) and 2,5-dimethyl (H₄L 2,5-diMe) derivatives have been prepared using a modified Mannich reaction. Hydrothermal reaction of gels prepared from metal (II) acetates and the bisphosphonic acids results in the synthesis of four structures: STA-12, Ni VSB-5, Co H₂L.H₂O and Mg H₂L. STA-12, synthesised by reaction of Mn, Fe, Co or Ni acetate with H₄L or H₄L-Me, has been investigated further. STA-12 crystallises in the space group R⁻₃, and Ni STA-12 is the most crystalline version. Its structure was solved from synchrotron data (a = b = 27.8342(1) Å, c = 6.2421(3) Å, α = β = 90°, γ = 120°), and it has large 10 Å hexagonal shaped pores. Helical chains of Ni octahedra are coordinated by the ligands, resulting in phosphonate tetrahedra pointing towards the pore space. Water is present, both coordinated to the Ni²⁺ cations and physically adsorbed in the pores. Mixed metal structures based on Ni STA-12, where some Ni is replaced in the gel by another divalent metal (Mg, Mn, Fe or Co) can also be synthesised. Dehydration of STA-12 results in two types of behaviour, depending on the metal present. Rhombohedral symmetry is retained on dehydration of Mn and Fe STA-12, the a cell parameter decreasing compared to the as-prepared structures by 2.42 Å and 1.64 Å respectively. Structure solution of dehydrated Mn STA-12 indicates changes in the torsion angles of the piperazine ring bring the inorganic chains closer together. Fe and Mn STA-12 do not adsorb N₂, which is thought to be due to the formation of an amorphous surface layer. Dehydration of Ni and Co STA-12 causes crystallographic distortion. Three phases were isolated for Ni STA-12: removal of physically adsorbed water results in retention of rhombohedral symmetry, while dehydration at 323 K removes some coordinated water forming a triclinic structure. A fully dehydrated structure (dehydrated at 423 K) was solved from synchrotron data (a = 6.03475(5) Å, b = 14.9156(2) Å, c = 16.1572(7) Å, α = 112.5721(7)°, β = 95.7025(11)°, γ = 96.4950(11)°). The dehydration mechanism, followed by UV-vis and Infra-red spectroscopy, involves removal of water from the Ni²⁺ cations and full coordination of two out of three of the phosphonate tetrahedra forming three crystallographically distinct Ni and P atoms. No structural distortion takes place on dehydration of Ni and Co STA-12 prepared using the methylated bisphosphonate, and the solids give a higher N₂ uptake as a result. Dehydrated Ni and Co STA-12 were tested for adsorption performance for fuel related gases and probe molecules. Investigations were undertaken at low temperature with H₂, CO and CO₂, and ambient temperature with CO₂, CH₄, CH₃CN, CH₃OH and large hydrocarbons. Due to the presence of lower crystallinity, Co STA-12 has an inferior adsorption performance to Ni STA-12, although it has similar adsorption enthalpies for CO₂ at ambient temperature (-30 to -35 kJ mol⁻¹). Ni STA-12 adsorbs similar amounts of CO₂ and N₂ at low temperature, indicating the adsorption mechanisms are similar. Also, it adsorbs 10 × more CO₂ than CH₄ at low pressure, meaning it could be used for separation applications. Ni STA-12 adsorbs 2 mmol g⁻¹ H₂ with an enthalpy of -7.5 kJ mol⁻¹, the uptake being due to adsorption on only one-third of the Ni²⁺ cations. The uptake for CO is 6 mmol g⁻¹, with adsorption enthalpies ranging from -24 to -14 kJ mol⁻¹. This uptake is due to adsorption on all the Ni²⁺, meaning the adsorption enthalpies are high enough to allow the structure to relax. This is also observed for adsorption of CH₃CN and CH₃OH, where there is a return to rhombohedral symmetry after uptake. The adsorption sites in dehydrated Ni and Co STA-12 were investigated via Infra-red spectroscopic analysis of adsorbed probe molecules (H₂, CO, CO₂, CH₃CN and CH₃OH). The results indicate the adsorption sites at both low and ambient temperature are the metal cations and the P=O groups. The metal cation sites are also characterised as Lewis acids with reasonable strength. STA-12 was shown to have acidic activity for the liquid phase selective oxidations of 1-hexene and cyclohexene, although there is evidence active sites are coordinated by products and/or solvents during the reaction. STA-12 also demonstrates basic activity for the Knoevenagel condensation of ethyl cyanoacetate and benzaldehyde. Modification of STA-12 by adsorption of diamine molecules causes a slight increase in the basicity, and the highest conversions are where water and diamine molecules are both present.

Page generated in 0.0359 seconds