Spelling suggestions: "subject:"thermoporomechanics"" "subject:"thermoporomechanical""
1 |
3D Modeling of Coupled Rock Deformation and Thermo-Poro-Mechanical Processes in FracturesRawal, Chakra 2012 May 1900 (has links)
Problems involving coupled thermo-poro-chemo-mechanical processes are of great importance in geothermal and petroleum reservoir systems. In particular, economic power production from enhanced geothermal systems, effective water-flooding of petroleum reservoirs, and stimulation of gas shale reservoirs are significantly influenced by coupled processes. During such procedures, stress state in the reservoir is changed due to variation in pore fluid pressure and temperature. This can cause deformation and failure of weak planes of the formation with creation of new fractures, which impacts reservoir response. Incorporation of geomechanical factor into engineering analyses using fully coupled geomechanics-reservoir flow modeling exhibits computational challenges and numerical difficulties. In this study, we develop and apply efficient numerical models to solve 3D injection/extraction geomechanics problems formulated within the framework of thermo-poro-mechanical theory with reactive flow.
The models rely on combining Displacement Discontinuity (DD) Boundary Element Method (BEM) and Finite Element Method (FEM) to solve the governing equations of thermo-poro-mechanical processes involving fracture/reservoir matrix. The integration of BEM and FEM is accomplished through direct and iterative procedures. In each case, the numerical algorithms are tested against a series of analytical solutions.
3D study of fluid injection and extraction into the geothermal reservoir illustrates that thermo-poro-mechanical processes change fracture aperture (fracture conductivity) significantly and influence the fluid flow. Simulations that consider joint stiffness heterogeneity show development of non-uniform flow paths within the crack. Undersaturated fluid injection causes large silica mass dissolution and increases fracture aperture while supersaturated fluid causes mineral precipitation and closes fracture aperture. Results show that for common reservoir and injection conditions, the impact of fully developed thermoelastic effect on fracture aperture tend to be greater compare to that of poroelastic effect.
Poroelastic study of hydraulic fracturing demonstrates that large pore pressure increase especially during multiple hydraulic fracture creation causes effective tensile stress at the fracture surface and shear failure around the main fracture. Finally, a hybrid BEFEM model is developed to analyze stress redistribution in the overburden and within the reservoir during fluid injection and production. Numerical results show that fluid injection leads to reservoir dilation and induces vertical deformation, particularly near the injection well. However, fluid withdrawal causes reservoir to compact. The Mandel-Cryer effect is also successfully captured in numerical simulations, i.e., pore pressure increase/decrease is non-monotonic with a short time values that are above/below the background pore pressure.
|
2 |
Simulação numérica tridimensional de processos de deformação em bacias sedimentares / Tridimensional numerical simulation of deformation processes in sedimentary basinsBrüch, André Reinert January 2016 (has links)
O desenvolvimento de modelos teóricos e computacionais para simular a história de deformação e reconstruir o estado termoporomecânico de bacias sedimentares é de grande interesse da indústria do petróleo. A compactação dos sedimentos, o escoamento dos fluidos e o fluxo térmico são processos de grande importância que ocorrem ao longo da diagênese. Fenômenos puramente mecânicos prevalecem nas camadas superiores da bacia associados à expulsão do fluido e ao rearranjo das partículas sólidas, enquanto a compactação químico-mecânica resultante dos processos de pressão-solução intergranular é dominante nas camadas mais profundas, onde as tensões e temperaturas são maiores. Estes processos de deformação podem ser significativamente afetados pela sua evolução térmica, já que o calor altera a viscosidade dos fluidos e as propriedades físico-químicas dos minerais. O objetivo deste trabalho é desenvolver um modelo constitutivo para o material poroso saturado no contexto da termoporomecânica finita e uma ferramenta computacional com uma interface de multiprocessamento em memória compartilhada baseada no método dos elementos finitos para representar os processos de formação e compactação gravitacional de uma bacia sedimentar. As deformações mecânicas e químico-mecânicas são representadas pela plasticidade e viscoplasticidade, respectivamente. Uma característica fundamental do modelo está relacionada à mudança das propriedades do material poroso em função da variação de temperatura e da evolução de caráter irreversível da sua microestrutura. Simulações numéricas realizadas em condições oedométricas permitem investigar a evolução do modelo constitutivo e do comportamento global da bacia, onde é possível verificar o caráter interdependente dos diferentes processos termoporomecânicos envolvidos. A capacidade da ferramenta computacional de representar problemas tridimensionais complexos é demonstrada a partir de uma história de deposição sedimentar associada a camadas estratigráficas com espessuras variáveis. / Development of theoretical and numerical models to simulate the deformation history and rebuild the thermoporomechanical state of sedimentary basins is of great interest for the oil industry. Compaction of sediments, fluid and thermal flows are fundamental coupled processes during diagenesis. Purely mechanical phenomena prevail in the upper layers involving pore fluid expulsion and rearrangement of solid particles, while chemo-mechanical compaction resulting from Intergranular Pressure-Solution (IPS) dominates for deeper burial as stress and temperature increase. The thermal evolution of the basin may substantially affect both processes as heat modifies the viscosity of fluids and physicochemical properties of minerals. The aim of the present contribution is to provide a constitutive model for saturated porous media in the context of finite thermoporomechanics and a numerical tool with a shared memory multiprocessing interface based on the finite element method to deal with depositional phase and gravitational compaction modeling of sedimentary basins. Purely mechanical and chemo-mechanical deformations are respectively modeled by means of plasticity and viscoplasticity. A key feature of the model is related to the evolution of the sediment material properties associated with temperature and large irreversible porosity changes. The evolution of the constitutive model and the overall behavior of the basin are provided by numerical simulations performed under oedometric conditions. The coupled nature of the thermoporomechanical processes is investigated. A depositional history with varying stratigraphic layers is proposed to demonstrate the ability of the numerical tool to model complex 3D problems.
|
3 |
Simulação numérica tridimensional de processos de deformação em bacias sedimentares / Tridimensional numerical simulation of deformation processes in sedimentary basinsBrüch, André Reinert January 2016 (has links)
O desenvolvimento de modelos teóricos e computacionais para simular a história de deformação e reconstruir o estado termoporomecânico de bacias sedimentares é de grande interesse da indústria do petróleo. A compactação dos sedimentos, o escoamento dos fluidos e o fluxo térmico são processos de grande importância que ocorrem ao longo da diagênese. Fenômenos puramente mecânicos prevalecem nas camadas superiores da bacia associados à expulsão do fluido e ao rearranjo das partículas sólidas, enquanto a compactação químico-mecânica resultante dos processos de pressão-solução intergranular é dominante nas camadas mais profundas, onde as tensões e temperaturas são maiores. Estes processos de deformação podem ser significativamente afetados pela sua evolução térmica, já que o calor altera a viscosidade dos fluidos e as propriedades físico-químicas dos minerais. O objetivo deste trabalho é desenvolver um modelo constitutivo para o material poroso saturado no contexto da termoporomecânica finita e uma ferramenta computacional com uma interface de multiprocessamento em memória compartilhada baseada no método dos elementos finitos para representar os processos de formação e compactação gravitacional de uma bacia sedimentar. As deformações mecânicas e químico-mecânicas são representadas pela plasticidade e viscoplasticidade, respectivamente. Uma característica fundamental do modelo está relacionada à mudança das propriedades do material poroso em função da variação de temperatura e da evolução de caráter irreversível da sua microestrutura. Simulações numéricas realizadas em condições oedométricas permitem investigar a evolução do modelo constitutivo e do comportamento global da bacia, onde é possível verificar o caráter interdependente dos diferentes processos termoporomecânicos envolvidos. A capacidade da ferramenta computacional de representar problemas tridimensionais complexos é demonstrada a partir de uma história de deposição sedimentar associada a camadas estratigráficas com espessuras variáveis. / Development of theoretical and numerical models to simulate the deformation history and rebuild the thermoporomechanical state of sedimentary basins is of great interest for the oil industry. Compaction of sediments, fluid and thermal flows are fundamental coupled processes during diagenesis. Purely mechanical phenomena prevail in the upper layers involving pore fluid expulsion and rearrangement of solid particles, while chemo-mechanical compaction resulting from Intergranular Pressure-Solution (IPS) dominates for deeper burial as stress and temperature increase. The thermal evolution of the basin may substantially affect both processes as heat modifies the viscosity of fluids and physicochemical properties of minerals. The aim of the present contribution is to provide a constitutive model for saturated porous media in the context of finite thermoporomechanics and a numerical tool with a shared memory multiprocessing interface based on the finite element method to deal with depositional phase and gravitational compaction modeling of sedimentary basins. Purely mechanical and chemo-mechanical deformations are respectively modeled by means of plasticity and viscoplasticity. A key feature of the model is related to the evolution of the sediment material properties associated with temperature and large irreversible porosity changes. The evolution of the constitutive model and the overall behavior of the basin are provided by numerical simulations performed under oedometric conditions. The coupled nature of the thermoporomechanical processes is investigated. A depositional history with varying stratigraphic layers is proposed to demonstrate the ability of the numerical tool to model complex 3D problems.
|
4 |
Simulação numérica tridimensional de processos de deformação em bacias sedimentares / Tridimensional numerical simulation of deformation processes in sedimentary basinsBrüch, André Reinert January 2016 (has links)
O desenvolvimento de modelos teóricos e computacionais para simular a história de deformação e reconstruir o estado termoporomecânico de bacias sedimentares é de grande interesse da indústria do petróleo. A compactação dos sedimentos, o escoamento dos fluidos e o fluxo térmico são processos de grande importância que ocorrem ao longo da diagênese. Fenômenos puramente mecânicos prevalecem nas camadas superiores da bacia associados à expulsão do fluido e ao rearranjo das partículas sólidas, enquanto a compactação químico-mecânica resultante dos processos de pressão-solução intergranular é dominante nas camadas mais profundas, onde as tensões e temperaturas são maiores. Estes processos de deformação podem ser significativamente afetados pela sua evolução térmica, já que o calor altera a viscosidade dos fluidos e as propriedades físico-químicas dos minerais. O objetivo deste trabalho é desenvolver um modelo constitutivo para o material poroso saturado no contexto da termoporomecânica finita e uma ferramenta computacional com uma interface de multiprocessamento em memória compartilhada baseada no método dos elementos finitos para representar os processos de formação e compactação gravitacional de uma bacia sedimentar. As deformações mecânicas e químico-mecânicas são representadas pela plasticidade e viscoplasticidade, respectivamente. Uma característica fundamental do modelo está relacionada à mudança das propriedades do material poroso em função da variação de temperatura e da evolução de caráter irreversível da sua microestrutura. Simulações numéricas realizadas em condições oedométricas permitem investigar a evolução do modelo constitutivo e do comportamento global da bacia, onde é possível verificar o caráter interdependente dos diferentes processos termoporomecânicos envolvidos. A capacidade da ferramenta computacional de representar problemas tridimensionais complexos é demonstrada a partir de uma história de deposição sedimentar associada a camadas estratigráficas com espessuras variáveis. / Development of theoretical and numerical models to simulate the deformation history and rebuild the thermoporomechanical state of sedimentary basins is of great interest for the oil industry. Compaction of sediments, fluid and thermal flows are fundamental coupled processes during diagenesis. Purely mechanical phenomena prevail in the upper layers involving pore fluid expulsion and rearrangement of solid particles, while chemo-mechanical compaction resulting from Intergranular Pressure-Solution (IPS) dominates for deeper burial as stress and temperature increase. The thermal evolution of the basin may substantially affect both processes as heat modifies the viscosity of fluids and physicochemical properties of minerals. The aim of the present contribution is to provide a constitutive model for saturated porous media in the context of finite thermoporomechanics and a numerical tool with a shared memory multiprocessing interface based on the finite element method to deal with depositional phase and gravitational compaction modeling of sedimentary basins. Purely mechanical and chemo-mechanical deformations are respectively modeled by means of plasticity and viscoplasticity. A key feature of the model is related to the evolution of the sediment material properties associated with temperature and large irreversible porosity changes. The evolution of the constitutive model and the overall behavior of the basin are provided by numerical simulations performed under oedometric conditions. The coupled nature of the thermoporomechanical processes is investigated. A depositional history with varying stratigraphic layers is proposed to demonstrate the ability of the numerical tool to model complex 3D problems.
|
Page generated in 0.036 seconds