• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The formation, decomposition and inhibition of clathrate hydrate systems measured by differential scanning calorimetry

Hirachand, Katan January 2000 (has links)
No description available.
2

An investigation on hydrate prediction and inhibition: An industrial case study

Rahmanian, Nejat, Soyler, N., Wande, F.M., Hashemi, H. 02 September 2024 (has links)
Yes / This investigation reports the first study to predict natural gas hydrate formation using both Aspen HYSYS® and HydraFlash software for various gas compositions and thermodynamic inhibitors (monoethylene glycol [MEG] concentrations at 10, 20, 30, and 40 wt.% and methanol concentrations at 10 and 20 wt.%). The simulated predictions are compared with the results of the experimental data in the literature. It has been shown that HydraFlash software can accurately predict hydrate formation conditions for a given industrial case, without having to carry out costly experimental work. This work also evaluated the effect of inhibitors and it appears that inhibitor type and concentration are determined according to condition of gas composition. MEG is consequently selected as the most ideal hydrate inhibitor for the industrial case. This also was confirmed through COSMO-RS studies in which the sigma profile and sigma potential of the considered inhibitors were obtained and presented using density functional (DFT) calculations to verify the hydrogen bonding affinities of the inhibitors to water molecules. HydraFlash was utilized to predict the dissociation conditions of hydrates under the influence of a high concentration of MEG inhibition, reaching up to 40 wt.% at 313 K and a pressure of 311.1 bar. Finally, it is shown that both software packages are quite accurate and useful tools for the prediction of hydrate for simple systems. However, HydraFlash can simulate more complex systems, including different types of salts at higher pressures. Investigation results indicate insightful guidance for accurately predicting hydrate dissociation under simulated conditions. / The authors would also like to thank the Turkish National Agency for offering an Erasmus student grant for Mr. Nejmi Söyler under the Erasmus+ Program Action 1 throughout the training period.
3

Raman spectroscopic study of the effect of aqueous salt solutions on the formation and dissociation behavior of CO2 gas hydrates

Holzammer, Christine 13 March 2020 (has links)
I present an experimental study on the formation and dissociation characteristics of carbon dioxide (CO2) gas hydrates using Raman spectroscopy. The CO2 hydrates were formed from aqueous salt solutions with salinities ranging from 0-11 wt-%, and the salts used were sodium chloride (NaCl), potassium chloride (KCl), magnesium chloride (MgCl2) and calcium chloride (CaCl2). The experiments were conducted in a high-pressure vessel, in which the aqueous solution was pressurized with liquid CO2 to 6 MPa. First, I investigated how the addition of salts to a CO2-hydrate forming system inhibits the hydrate formation thermodynamically. For this purpose, the molar enthalpy of reaction between strongly and weakly hydrogen bonded water molecules was determined. I observed a decrease in the molar reaction enthalpy of up to 30 % for the highest salt concentration investigated. In addition, the influence of the salts on the solubility of CO2 in water was studied, which was reduced up to 40 %. The results showed that both properties could be well correlated with the effective mole fraction of salt in solution. Furthermore, the decrease in molar reaction enthalpy could be directly correlated with the equilibrium temperature of gas hydrates. This showed that the shift in equilibrium temperature induced by thermodynamic inhibitors was a direct result from the weakened hydrogen bonded network in the water-rich liquid phase before the onset of gas hydrate formation. Additionally, the growth mechanisms of CO2 hydrates were investigated by determining the amount of solid hydrate formed and the respective reaction constant. The reaction constant was not affected by the addition of salts, whereas the maximum amount of solid hydrate formed also showed a good correlation with the effective mole fraction. This finding leads to the assumption that salt does not affect the intrinsic growth mechanisms of hydrate formation, but that the weakened hydrogen bonded network leads to a decrease in the conversion of liquid water to hydrate and more water molecules stay in a liquid in the form of inclusions between the hydrate cages. Lastly, I analyzed the ratio of CO2 and water and the development of hydrogen bonds after the complete dissociation of hydrate. I observed a supersaturation of CO2 in the water-rich phase and found evidence that the excess CO2 exists as dispersed micro- or nanoscale liquid droplets in the liquid water-rich phase. The development of hydrogen bonds in the liquid water-rich phase was the same as before the hydrate formation. These results could be a possible explanation for the memory effect originating from residual nano- and mircodroplets. With this study, I aim to provide a better understanding of the mode of action of thermodynamic inhibitors and to contribute further insights to the controversially debated phenomenon of the memory effect.

Page generated in 0.091 seconds