• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermodynamic Insight for the Design and Optimization of Extractive Distillation of 1.0-1a Class Separation / Approche thermodynamique pour la conception et l'optimisation de la distillation extractive de mélanges à température de bulle minimale (1.0-1a)

You, Xinqiang 07 September 2015 (has links)
Nous étudions la distillation extractive continue de mélanges azéotropiques à temperature de bulle minimale avec un entraineur lourd (classe 1.0-1a) avec comme exemples les mélanges acétone-méthanol avec l’eau et DIPE-IPA avec le 2-méthoxyethanol. Le procédé inclut les colonnes de distillation extractive et de régénération de l’entraineur en boucle ouverte et en boucle fermée. Une première stratégie d’optimisation consiste à minimiser la fonction objectif OF en cherchant les valeurs optimales du débit d’entraineur FE, les positions des alimentations en entraineur et en mélange NFE, NFAB, NFReg, les taux de reflux R1, R2 et les débits de distillat de chaque colonne D1, D2. OF décrit la demande en énergie par quantité de distillat et tient compte des différences de prix entre les utilités chaudes et froides et entre les deux produits. La deuxième stratégie est une optimisation multiobjectif qui minimise OF, le coût total annualisé (TAC) et maximise deux nouveaux indicateurs thermodynamiques d’efficacité de séparation extractive totale Eext et par plateau eext. Ils décrivent la capacité de la section extractive à séparer le produit entre le haut et le bas de la section extractive. L’analyse thermodynamique des réseaux de courbes de résidu ternaires RCM et des courbes d’isovolatilité montre l’intérêt de réduire la pression opératoire dans la colonne extractive pour les séparations de mélanges 1.0-1a. Une pression réduite diminue la quantité minimale d’entraineur et accroît la volatilité relative du mélange binaire azéotropique dans la région d’opération de la colonne extractive. Cela permet d’utiliser un taux de reflux plus faible et diminue la demande énergétique. La première stratégie d’optimisation est conduite avec des contraintes sur la pureté des produits avec les algorithmes SQP dans les simulateurs Aspen Plus ou Prosim Plus en boucle ouverte. Les variables continues optimisées sont : R1, R2 et FE (étape 1). Une étude de sensibilité permet de trouver les valeurs de D1, D2 (étape 2) et NFE, NFAB, NFReg (étape 3), tandis l’étape 1 est faite pour chaque jeu de variables discrètes. Enfin le procédé est resimulé en boucle fermée et TAC, Eext et eext sont calculés (étape 4). Les bilans matières expliquent l’interdépendance des débits de distillats et des puretés des produits. Cette optimisation permet de concevoir des procédés avec des gains proches de 20% en énergie et en coût. Les nouveaux procédés montrent une amélioration des indicateurs Eext et eext. Afin d’évaluer l’influence de Eext et eext sur la solution optimale, la seconde optimisation multiobjectif est conduite. L’algorithme génétique est peu sensible à l’initialisation, permet d’optimiser les variables discrètes N1, N2 et utilise directement le shéma de procédé en boucle fermée. L’analyse du front de Pareto des solutions met en évidence l’effet de FE/F et R1 sur TAC et Eext. Il existe un Eext maximum (resp. R1 minimum) pour un R1 donné (resp. Eext). Il existe aussi un indicateur optimal Eext,opt pour le procédé optimal avec le plus faible TAC. Eext,opt ne peut pas être utilisé comme seule fonction objectif d’optimisation mais en complément des autres fonctions OF et TAC. L’analyse des réseaux de profils de composition extractive explique la frontière du front de Pareto et pourquoi Eext augmente lorsque FE diminue et R1 augmente, le tout en lien avec le nombre d’étage. Visant à réduire encore TAC et la demande énergétique nous étudions des procédés avec intégration énergétique double effet (TEHI) ou avec des pompes à chaleur (MHP). En TEHI, un nouveau schéma avec une intégration énergétique partielle PHI réduit le plus la demande énergétique. En MHP, la recompression partielle des vapeurs VRC et bottom flash partiel BF améliorent les performances de 60% et 40% respectivement. Au final, le procédé PHI est le moins coûteux tandis que la recompression totale des vapeurs est la moins énergivore. / We study the continuous extractive distillation of minimum boiling azeotropic mixtures with a heavy entrainer (class 1.0-1a) for the acetone-methanol with water and DIPE-IPA with 2-methoxyethanol systems. The process includes both the extractive and the regeneration columns in open loop flowsheet and closed loop flowsheet where the solvent is recycled to the first column. The first optimization strategy minimizes OF and seeks suitable values of the entrainer flowrate FE, entrainer and azeotrope feed locations NFE, NFAB, NFReg, reflux ratios R1, R2 and both distillates D1, D2. OF describes the energy demand at the reboiler and condenser in both columns per product flow rate. It accounts for the price differences in heating and cooling energy and in product sales. The second strategy relies upon the use of a multi-objective genetic algorithm that minimizes OF, total annualized cost (TAC) and maximizes two novel extractive thermodynamic efficiency indicators: total Eext and per tray eext. They describe the ability of the extractive section to discriminate the product between the top and to bottom of the extractive section. Thermodynamic insight from the analysis of the ternary RCM and isovolatility curves shows the benefit of lowering the operating pressure of the extractive column for 1.0-1a class separations. A lower pressure reduces the minimal amount of entrainer and increases the relative volatility of original azeotropic mixture for the composition in the distillation region where the extractive column operates, leading to the decrease of the minimal reflux ratio and energy consumption. The first optimization strategy is conducted in four steps under distillation purity specifications: Aspen Plus or Prosim Plus simulator built-in SQP method is used for the optimization of the continuous variables: R1, R2 and FE by minimizing OF in open loop flowsheet (step 1). Then, a sensitivity analysis is performed to find optimal values of D1, D2 (step 2) and NFE, NFAB, NFReg (step 3), while step 1 is done for each set of discrete variables. Finally the design is simulated in closed loop flowsheet, and we calculate TAC and Eext and eext (step 4). We also derive from mass balance the non-linear relationships between the two distillates and how they relate product purities and recoveries. The results show that double digit savings can be achieved over designs published in the literature thanks to the improving of Eext and eext. Then, we study the influence of the Eext and eext on the optimal solution, and we run the second multiobjective optimization strategy. The genetic algorithm is usually not sensitive to initialization. It allows finding optimal total tray numbers N1, N2 values and is directly used with the closed loop flow sheet. Within Pareto front, the effects of main variables FE/F and R1 on TAC and Eext are shown. There is a maximum Eext (resp. minimum R1) for a given R1 (resp. Eext). There exists an optimal efficiency indicator Eext,opt which corresponds to the optimal design with the lowest TAC. Eext,opt can be used as a complementary criterion for the evaluation of different designs. Through the analysis of extractive profile map, we explain why Eext increases following the decrease of FE and the increase of R1 and we relate them to the tray numbers. With the sake of further savings of TAC and increase of the environmental performance, double-effect heat integration (TEHI) and mechanical heat pump (MHP) techniques are studied. In TEHI, we propose a novel optimal partial HI process aiming at the most energy saving. In MHP, we propose the partial VRC and partial BF heat pump processes for which the coefficients of performance increase by 60% and 40%. Overall, optimal partial HI process is preferred from the economical view while full VRC is the choice from the environmental perspective.
2

Extension of thermodynamic insights on batch extractive distillation to continuous operation / Conception des procédés de distillation extractive continue basée sur des critères de faisabilité thermodynamique de la distillation extractive discontinue

Shen, Weifeng 21 September 2012 (has links)
Nous étudions la faisabilité du procédé de distillation extractive continue pour séparer des mélanges azéotropiques A-B à température de bulle minimale ou maximale, avec un tiers corps E lourd ou léger. Les mélanges ternaires A-B-E appartiennent aux classes 1.0-1-a et 1.0-2 qui se subdivisent chacune en deux souscas selon la position de la courbe d'univolatilité. La colonne de distillation a trois sections, rectification, extractive, épuisement. Nous établissons les équations décrivant les profiles de composition liquide dans chaque section en fonction des paramètres opératoires: pureté et taux de récupération du distillat, taux de reflux ratio R et rapport des débits d'alimentation FE/F dans le cas d'un tiers corps lourd ; pureté et taux de récupération du produit de pied, taux de rebouillage S et rapport des débits d'alimentation FE/F dans le cas d'un tiers corps léger. Avec un tiers corps lourd alimenté comme liquide bouillant au dessus de l'étage d'alimentation du mélange A-B, nous identifions le distillat atteignable et les plages de valeurs faisables des paramètres R et FE/F à partir du critère général de faisabilité énoncé par Rodriguez-Donis et al. (Ind. Eng. Chem. Res, 2009, 48(7), 3544–3559). Pour la classe 1.0-1a, il existe des rapport FE/F et reflux ratio minimum. Le rapport FE/F est plus important pour le procédé continu que pour le procédé discontinu parce que la faisabilité du procédé continu nécessite que les profils d'épuisement et extractifs s'intersectent. Pour la classe 1.0-2, les deux constituants A et B sont des distillats potentiels, l'un sous réserve que le rapport FE/F reste inférieur à une valeur limite maximale. Le procédé continu exhibe également une valeur minimale de FE/F à un taux de reflux ratio donné, contrairement au procédé discontinu. Avec un tiers corps léger alimenté comme vapeur saturante sous l'étage d'alimentation du mélange A-B, nous identifions le produit de pied atteignable et les plages de valeurs faisables des paramètres S et FE/F à partir du critère général de faisabilité énoncé par Rodriguez-Donis et al. (Ind. Eng. Chem. Res, 2012, 51, 4643–4660). Comparé au cas des tiers corps lourds, le produit principal est obtenu en pied. Autrement, les comportements des classes 1.0-1a et 1.0-2 sont analogues entre les tiers corps léger et lourd. Avec un tiers corps léger, le procédé continu ajoute la contrainte que les profils de rectification et extractifs s'intersectent. La contrainte d'intersection des profils d'épuisement et extractif est partagée par les deux modes opératoires continu et discontinu. Ce travail valide la méthodologie proposée pour évaluer la faisabilité du procédé de distillation extractive continue et permet de comparer les tiers entre eux en termes de taux de reflux ratio minimum et de rapport de débit d'alimentation minimal / We study the continuous extractive distillation of minimum and maximum boiling azeotropic mixtures A-B with a heavy or a light entrainer E, intending to assess its feasibility based on thermodynamic insights. The ternary mixtures belong to the common 1.0-1a and 1.0-2 class ternary diagrams, each with two sub-cases depending on the univolatility line location. The column has three sections, rectifying, extractive and stripping. Differential equations are derived for each section composition, depending on operating parameters: distillate product purity and recovery, reflux ratio R and entrainer – feed flow rate ratio FE/F for the heavy case; bottom product purity and recovery, reboil ratio and entrainer – feed flow rate ratio for the light entrainer case. For the case with a heavy entrainer fed as a boiling liquid above the main feed, the feasible product and operating parameters R and FE/F ranges are assessed under infinite reflux ratio conditions by using the general feasibility criterion enounced by Rodriguez-Donis et al. (Ind. Eng. Chem. Res, 2009, 48(7), 3544–3559). For the 1.0-1a class, there exists a minimum entrainer - feed flow rate ratio to recover the product, and also a minimum reflux ratio. The minimum entrainer - feed flow rate ratio is higher for the continuous process than for the batch because of the additional requirement in continuous mode that the stripping profile intersects with the extractive profile. For the 1.0-2 class both A and B can be distillated. For one of them there exists a maximum entrainer - feed flow rate ratio. The continuous process also has a minimum entrainer - feed flow rate ratio limit for a given feasible reflux ratio. For the case with a light entrainer fed as saturated vapor below the main feed, the feasible product and operating parameters S and FE/F ranges are assessed under infinite reflux ratio conditions by using the general feasibility criterion enounced by Rodriguez-Donis et al. (Ind. Eng. Chem. Res, 2012, 51, 4643–4660), Compared to the heavy entrainer case, the main product is removed from the column bottom. Similar results are obtained for the 1.0-1a and 1.0-2 class mixtures whether the entrainer is light or heavy. With a light entrainer, the batch insight about the process feasibility holds for the stripping and extractive sections. Now, an additional constraint in continuous mode comes from the necessary intersection between the rectifying and the extractive sections. This work validates the proposed methodology for assessing the feasibility of continuous extractive distillation processes and enables to compare entrainers in terms of minimum reflux ratio and minimum entrainer feed flow rate ratio

Page generated in 0.0761 seconds