• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermomechanical Response of Shape Memory Alloy Hybrid Composites

Turner, Travis Lee 01 December 2000 (has links)
This study examines the use of embedded shape memory alloy (SMA)actuators for adaptive control of the themomechanical response of composite structures. Control of static and dynamic responses are demonstrated including thermal buckling, thermal post-buckling, vibration, sonic fatigue, and acoustic transmission. A thermomechanical model is presented for analyzing such shape memory alloy hybrid composite (SMAHC) structures exposed to thermal and mechanical loads. Also presented are (1) fabrication procedures for SMAHC specimens, (2) characterization of the constituent materials for model quantification, (3) development of the test apparatus for conducting static and dynamic experiments on specimens with and without SMA, (4) discussion of the experimental results, and (5) validation of the analytical and numerical tools developed in the study. The constitutive model developed to describe the mechanics of a SMAHC lamina captures the material nonlinearity with temperature of the SMA and matrix material if necessary. It is in a form that is amenable to commercial finite element (FE) code implementation. The model is valid for constrained, restrained, or free recovery configurations with appropriate measurements of fundamental engineering properties. This constitutive model is used along with classical lamination theory and the FE method to formulate the equations of motion for panel-type structures subjected to steady-state thermal and dynamic mechanical loads. Mechanical loads that are considered include acoustic pressure, inertial (base acceleration), and concentrated forces. Four solution types are developed from the governing equations including thermal buckling, thermal post-buckling, dynamic response, and acoustic transmission/radiation. These solution procedures are compared with closed-form and/or other known solutions to benchmark the numerical tools developed in this study. Practical solutions for overcoming fabrication issues and obtaining repeatable specimens are demonstrated. Results from characterization of the SMA constituent are highlighted with regard to their impact on thermomechanical modeling. Results from static and dynamic tests on a SMAHC beam specimen are presented, which demonstrate the enormous control authority of the SMA actuators. Excellent agreement is achieved between the predicted and measured responses including thermal buckling, thermal post-buckling, and dynamic response due to inertial loading. The validated model and thermomechanical analysis tools are used to demonstrate a variety of static and dynamic response behaviors associated with SMAHC structures. Topics of discussion include the fundamental mechanics of SMAHC structures, control of static (thermal buckling and post-buckling) and dynamic responses (vibration, sonic fatigue, and acoustic transmission), and SMAHC design considerations for these applications. The dynamic response performance of a SMAHC panel specimen is compared to conventional response abatement approaches. SMAHCs are shown to have significant advantages for vibration, sonic fatigue, and noise control. / Ph. D.
2

Méthodologie pour le durcissement et l’accélération d’essais sur composites à matrice céramique aéronautiques / Accelerated testing on ceramic matrix composites aimed at aeronautical applications

Simon, Coraline 02 October 2017 (has links)
Dans le but d’une introduction en aéronautique civile, la certification des composites à matrice céramique(CMC) requiert la justification de la tenue du matériau durant toute la durée de vie de l’avion (50000h environ),dans des milieux oxydants à haute température et sous les contraintes élevées rencontrées en application. Lebut de cette thèse est d’identifier comment accélérer les essais de vieillissement pour obtenir sur de pluscourtes périodes de temps des essais représentatifs du comportement du matériau en conditions standard. Lecomposite étudié étant doté d’une matrice auto-cicatrisante dont l’efficacité est liée de manière complexe à latempérature et à l’humidité présente dans le milieu oxydant, une compréhension fine des mécanismes dedégradation est nécessaire afin de choisir des leviers d’accélération pertinents. L’influence de paramètresd’essai sélectionnés (pression partielle d’eau, type de chargement mécanique, fréquence de cyclagemécanique, température) sur les cinétiques d’endommagement est analysée, tout en vérifiant que lesmécanismes de dégradation ne sont pas modifiés. La mise en place de méthodes de suivi d'endommagementnon-destructives est indispensable pour quantifier en temps réel les niveaux de dégradation des matériauxsous différentes conditions expérimentales: le suivi par émission acoustique a été utilisé et une techniqueoriginale de suivi par mesure de résistance électrique durant des essais de longue durée a été développée.Deux modèles électro-mécaniques ont été proposés concernant l’évolution de résistance électrique àtempérature ambiante et sous conditions oxydantes. Des estimations de durées de vie basées sur cestechniques ont permis de proposer une méthodologie vers l’accélération d’essais sur CMC. / With the aim of an introduction in civil aeronautics, the certification of Ceramic Matrix Composites (CMC)requires to demonstrate the correct behavior of the material during the whole lifetime of the aircraft (about50000h), in high-temperature oxidizing environments and under the stress levels required by the applications.The goal of this thesis is to identify a methodology to accelerate ageing tests in order to get, in shorterdurations, results that are representative of the behavior of the material in standard conditions. The studiedcomposite includes a self-healing matrix which efficiency is linked in a complex way to temperature andhumidity. A thorough understanding of degradation mechanisms is therefore required in order to identifyrelevant accelerating levers. The influence of the selected test parameters (water partial pressure, type ofmechanical loading, frequency of cyclic loading, temperature) on the damage kinetics has been analyzed, whilechecking that the damage mechanisms were not modified. Non destructive monitoring techniques are essentialto quantify in real time the damage level of materials under different test conditions: acoustic emissionmonitoring has been used, and an original method of damage monitoring using electrical resistivity has beendeveloped. Two electromechanical models were proposed, describing the evolution of electrical resistance atroom temperature and under oxidizing conditions. Lifetime estimations based on these techniques led topropose a methodology towards accelerated testing on CMCs.
3

Studium funkčních vlastností tenkých vláken NiTi pro aplikace v smart strukturách a textiliích / Investigation of Functional Properties of Thin NiTi Filaments for Applications in Smart Structures and Hybrid Textiles

Pilch, Jan January 2011 (has links)
PhD thesis focuses the field of textile application of modern functional materials, namely metallic shape memory alloys with unique thermomechanical properties deriving from martensitic transformation in solid state. Particularly, it deals with the development of a nonconventional thermomechanical treatment of thin NiTi filaments via Joule heating by electric current and related basic research involving thermomechanical testing and modeling of functional properties of the filaments, investigation of martensitic transformations and deformation processes in NiTi and investigation of the fast recovery and recrystallization processes in metals heated by short pulses of controlled electric power. The method was developed and called FTMT-EC. In contrast to conventional heat treatment of metallic filaments in environmental furnaces, this method allows for precise control of the raise of the filament temperature and filament stress during the fast heating (rate ~50 000 °C/s). As a consequence, it is possible to precisely control the progress of the fast recovery and recrystallization processes in heat treated filaments. In this way it is possible to prepare filaments with desired nanostructured microstructure and related functional properties. A prototype equipment for application of the method for heat treatment of continuous SMA filaments during respooling in textile processing was designed and built. Comparing to the conventional heat treatment of SMA filaments in tubular environmental furnaces, this approach is faster, saves energy and allows for preparation of filaments with special functional properties. International patent application was filed on the method. It is currently utilized in the research and development of smart textiles for medical applications.
4

Studium funkčních vlastností tenkých vláken NiTi pro aplikace v smart strukturách a textiliích / Investigation of Functional Properties of Thin NiTi Filaments for Applications in Smart Structures and Hybrid Textiles

Pilch, Jan January 2011 (has links)
PhD thesis focuses the field of textile application of modern functional materials, namely metallic shape memory alloys with unique thermomechanical properties deriving from martensitic transformation in solid state. Particularly, it deals with the development of a nonconventional thermomechanical treatment of thin NiTi filaments via Joule heating by electric current and related basic research involving thermomechanical testing and modeling of functional properties of the filaments, investigation of martensitic transformations and deformation processes in NiTi and investigation of the fast recovery and recrystallization processes in metals heated by short pulses of controlled electric power. The method was developed and called FTMT-EC. In contrast to conventional heat treatment of metallic filaments in environmental furnaces, this method allows for precise control of the raise of the filament temperature and filament stress during the fast heating (rate ~50 000 °C/s). As a consequence, it is possible to precisely control the progress of the fast recovery and recrystallization processes in heat treated filaments. In this way it is possible to prepare filaments with desired nanostructured microstructure and related functional properties. A prototype equipment for application of the method for heat treatment of continuous SMA filaments during respooling in textile processing was designed and built. Comparing to the conventional heat treatment of SMA filaments in tubular environmental furnaces, this approach is faster, saves energy and allows for preparation of filaments with special functional properties. International patent application was filed on the method. It is currently utilized in the research and development of smart textiles for medical applications.

Page generated in 0.1227 seconds