• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Viscoelastic relaxation in bolted thermoplastic composite joints

Schmitt, Ron R. 12 1900 (has links)
Results from a research program to investigate the long term effects of through-the-thickness fastener clamp-up force (preload) relaxation on the strength of mechanically fastened joints for two graphite/thermoplastic composite materials (Dupont's IM6/KIII and ICI-Fiberite's IM8/APC(HTA)) are summarized and compared with analytical methods. An experimental program was conducted in which 56 mechanically fastened single-shear joints were tested. Phase I static tests established joint bearing strength as a function of clamp-up force for two types of fasteners (protruding head and countersink) with no relaxation of preload. Phase II testing monitored short-term fastener preload relaxation (up to 1 ,000 hours), with special bolt force sensor washers. Inservice parameters included were temperature, in-plane loads, and torque. The jOints were tested to failure at the end of the relaxation time period to determine any subsequent effect on joint strength. Phase I test results indicated that joint bearing strength increased by as much as twenty-eight percent over the clamp-up force range of a Ibs (fingertight) to 3,500 Ibs for both materials. Fastener head type, material, and temperature also affected the resultant bearing strength. For Phase II, fastener clamp-up force at room temperature (78°F) relaxed an average of six percent from the initial value during the short-term test period. The relaxation was projected to be as high as fourteen and sixteen percent at 100,000 hours for HTA and Kill, respectively. The elevated temperature condition (250°F) significantly increased the relaxation rate with the projected 100,000 hour relaxation amount being as high as thirty-seven percent for HTA and sixty percent for Kill. Comparison of the Phase II bearing strengths to the Phase I results indicated that portions of the data correlated well, while others did not. It was concluded that relaxation of the clamp-up force over the short-term time period did not significantly lower the bearing strength of either material, however an extended exposure to 250°F could affect the bearing strength. / Thesis (M.S.)--Wichita State University, College of Engineering, Dept. of Aerospace Engineering.

Page generated in 0.0629 seconds