• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The in situ generation of liquid crystalline polymer reinforcements in thermoplastics

Sukhadia, Ashish Mahendra 05 February 2007 (has links)
The overall objective of this work was to enhance the mechanical properties of thermoplastics by blending with liquid crystalline polymers (LCPs). Injection molding and sheet extrusion studies of blends of poly(ethylene terephthalate) (PET) with several LCPs were conducted with an emphasis on blends containing 50 wt % or less of the LCP. It was seen that significant enhancements (50-350%) in the tensile and flex moduli of PET were achieved by blending with 0-50 wt % LCPs via injection molding. The level of property enhancements was lower in the case of-sheet extrusion due largely to processing limitations which made it difficult to obtain high draw ratios. Since thermotropic LCPs typically have high melting temperatures it is difficult to blend several thermoplastics such as polypropylene (PP) with these LCPs in the same extruder or molding unit. Thus a blending method (hereon referred to as the dual-extruder mixing method) was developed to overcome this limitation. In this method, the matrix and LCP polymers were plasticated in two separate extruders, subsequently mixed downstream in a static mixer (Kenics) and the melt blend than passed through an appropriate capillary or sheet die to generate strands or sheets, respectively. Using this method, blends of PET and PP with several LCPs were extruded into strands and sheets. In some cases, for example PP and Vectra A900 (LCP), the difference in their normal processing temperatures was in excess of 100°C. Strands of PET/Vectra A900 70/30 composition ratio were observed to have higher moduli than a blend of the same composition extruded using a single extruder at all the draw ratios tested. This was determined to be due to the different LCP fibrillar morphology in the two cases. In the case of the dual-extruder mixing method, the LcP fibrils were continuous, running the length of the extrudate, and further devoid of any skin-core structure. In contrast, the single-screw extruder blend had a distinct skin-core fibril-droplet type of structure and the LCP fibrils were not continuous. On the basis of other independent experiments, it was confirmed that the LCP fibrils in the dual-extruder mixing method were generated in the static mixer itself whereas the LCP fibrils in the case of single-screw extrusion were generated in the converging section of the die and/or by drawing at the die exit. This difference in the mode of LCP fibril generation in the two cases was attributed to the distributive mixing mechanism of the static mixer compared to the dispersive mixing in the extruder. Strands of PP/LCP and PET/LCP had significantly enhanced tensile moduli compared to the corresponding matrix tensile modulus. Enhancements of 10-20 times that of the pure matrix were achieved when blends containing about 20-30 wt % of the LCP were extruded from the dual-extruder mixing method. The tensile moduli of sheets of PET/LCP and PP/LCP blends were not much higher than that of the corresponding matrix polymer and this was attributed to the low molecular orientation achieved in the sheets due to low draw ratios. The tensile strengths of the majority of the blends were not enhanced to any appreciable degree and poor wetting and adhesion between the thermoplastic-LCP polymers was believed to be the cause. Comparison of some of the mechanical properties (tensile modulus, tensile strength, flexural modulus) of the thermoplastic/LCP blends generated in this study with data from the literature on thermoplastic/inorganic filler composites showed that when compared on the basis of equal wt % of the reinforcement in the blend, the LCP composites can yield mechanical properties which are in the same range as those obtained using inorganic fillers. / Ph. D.
2

Autohesion model for thermoplastic composites

Li, Min-Chung January 1989 (has links)
A non-isothermal autohesion model was developed by combining a transient finite element heat transfer model with the isothermal autohesion model. Heat transfer analyses and the interfacial strength development analyses were conducted using the non-isothermal autohesion model on a polysulfone (Udel P1700) compact tension specimen, a 64-ply graphic (Thomel T300)/P1700 unidirectional composite, and a 192-ply graphite (Hercules AS4)/P1700 unidirectional composite. A 64-ply T300/P1700 unidirectional composite was processed in a matched metal mold. Temperature data were taken and compared with the calculated values. Good agreement was observed between the calculated and the measured temperature values. A healing test which aimed at studying the interplay bond development in AS4/P1700 unidirectional composites was performed. The double cantilevered beam (DCD) Mode l fracture toughness test was selected. The DCB specimens were fractured and healed in a special fixture with different combinations of temperature pressure, and time. The healed DCB specimens were refractured and the critical strain energy release rates (G<sub>IC</sub>) were measured. The pressure was found to be a key factor in the healing process. Temperature and time dependencies of the interply bond development were also observed. The non-isothermal autohesion model predicted a higher strength achieved in a shorter time. This was due to the extra time which was needed for the fracture interface to achieve intimate contact, and the assumption of the initial intimate contact achievement of the non-isothermal autohesion model. / Master of Science
3

Synthesis of poly(arylene ether sulfone)-polyimide segmented copolymers

Wilkens, Diana L. 14 March 2009 (has links)
Poly(arylene ether sulfone) oligomers have been synthesized by nucleophilic aromatic substitution using potassium carbonate as base and N-methyl pyrrolidinone (NMP) as solvent. m-Aminophenol was used as an endcapper to control the molecular weight of the oligomers and to provide functional amine termination. These amine terminated oligomers can then be utilized in a variety of post reactions. Poly(arylene ether sulfone)-Polyimide segmented copolymers were synthesized using a solution imidization procedure with NMP as the solvent and o-dichlorobenzene as the azeotroping agent. The polysulfone oligomers were reacted into the system via the diamine oligomer. The segmented copolymers demonstrated good solubility characteristics, high thermal stability, and high glass transition temperatures. Previously, polyimides containing pyromellitic dianhydride (PMDA) did not remain soluble in the NMP solvent during the solution imidization, but rather precipitated out of solution when partially imidized. Incorporation of the amine terminated polysulfone oligomers into PMDA containing copolymers resulted in Systems that remained soluble even after completion of imidization. The resulting copolymers were completely soluble in many of the high boiling solvents. The copolymers demonstrated high thermal Stability and high glass transition temperatures. / Master of Science

Page generated in 0.0721 seconds