• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 29
  • 4
  • Tagged with
  • 83
  • 83
  • 83
  • 61
  • 54
  • 36
  • 35
  • 33
  • 25
  • 25
  • 22
  • 21
  • 19
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Biological control of the two-spotted spider mite, Tetranychus urticae Koch (Acari : tetranychidae).

Gatarayiha, Mutimura Celestin. January 2009 (has links)
The two-spotted spider mite (TSM), Tetranychus urticae Koch, is an important pest of many greenhouse and field crops worldwide. The development of resistance in TSM populations to chemical acaricides, allied with public health concerns about pesticide residues, has motivated the search for alternative control measures to suppress the pest. Hyphomycetous fungi are promising agents for mite control and the fungus Beauveria bassiana (Bb) (Balsamo) Vuillemin was investigated in this study as a biocontrol agent. The principal objectives of this study comprised: a) screening Bb strains for their pathogenicity against T. urticae; b) testing the effect of adjuvants on the efficacy of Bb; c) studying the effect of plant type on persistence of Bb and the efficacy of control of Bb against T. urticae; d) evaluating the field efficacy of Bb applications against T. urticae; e) testing the compatibility of Bb with selected fungicides; and f) assessing the synergy between Bb and soluble silicon for T. urticae control. Screening bioassays of sixty-two strains of Bb identified the two most effective strains, PPRI 7315 (R289) and PPRI 7861 (R444), that caused mortality levels of more than 80% of adult mites at 9 d post-inoculation with 2 × 108 conidia ml-1. These strains performed significantly better than the Bb commercial strain PPRI 5339, in laboratory bioassays. The two strains also attacked mite eggs, causing 53.4% and 55.5% reduction in egg hatchability at 2 × 108 conidia ml-1 respectively. However, PPRI 7861 showed relatively higher production of conidia in culture and was, therefore, selected for further trials under greenhouse and field conditions. Greenhouse evaluations of the effects of two adjuvants (Break-thru® and a paraffin oil-based emulsion) on efficacy of Bb demonstrated a higher efficacy of the biocontrol agent (BCA) when it was applied with Break-thru® or the oil solution than with water alone. Moreover, Bb conidia applied in Break-thru® solution resulted in greater control of TSM than conidia applied in the mineral oil. There was also a dose-response effect and the control of TSM by Bb increased when the concentration of conidia was increased. The control of TSM by Bb in beans (Phaseolus vulgaris L), cucumber (Cucumis sativus L.), eggplant (Solanum melongena L.), maize (Zea mays L.) and tomato (Solanum lycopersicum L.) was tested in greenhouse trials. On these crops, the persistence of conidia declined over time. The rate of decline was significantly higher on maize. However, TSM mortality was positively correlated with the amount of conidia deposited on leaves immediately after spraying, rather than their persistence over time. Higher levels of mortality of TSM due to Bb application were observed on beans, cucumber and eggplants, suggesting that the type of crop must be taken into consideration when Bb is applied as a BCA. Field efficacy of Bb against mites was evaluated in two trials on eggplants. Based on assessment of population densities of mites and leaf damage assessments; both trials showed that the strain PPRI 7861 controlled TSM in the field. Two commonly used fungicides, azoxystrobin and flutriafol, were investigated in vitro tests on culture medium and laboratory bioassays on detached bean leaves (Phaseolus vulgaris L.) for their effects on Bb. Azoxystrobin (a strobilurin) was less harmful to Bb while flutriafol was found to be inhibitory. Another important finding of this study was the substantial enhancement of Bb efficacy by soluble silicon. When Bb was combined with soluble Si, the control of TSM was better than when either of the two products was applied alone. Moreover, application of soluble Si as a plant fertilizer in hydroponic water nutrient increased accumulation of peroxidase, polyphenoloxidase and phenylalanine ammonia-lyase enzymes in leaves of plants infested with TSM. Increased activity of these defense enzymes in leaves deters feeding behaviour of mites. We suggested that feeding stress renders them susceptible to Bb infection, which would explain the synergy observed between the two agents. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2009.
82

Studies on Sclerotinia sclerotiorum (Sclerotinia stem rot) on soybeans.

Visser, Dael Desiree. January 2007 (has links)
Soybeans, Glycine max, are an economically and strategically important crop in South Africa (SA). In order to meet local demands, large imports of soybeans are required, e.g., in the 2005/2006 soybean production period, 842 107 tonnes of oilcake were imported. Due to an increase in soybean production throughout the world, diseases that affect this crop have also increased in incidence and severity. Sclerotinia sclerotiorum, the causal organism of sclerotinia stem rot (SSR), is an important yield limiting disease of soybeans, as well as numerous other crops. The pathogen was first reported in SA in 1979. However, it was only in 2002 that this fungus was considered a major pathogen of soybeans in SA. The research reported in this thesis was conducted to investigate the epidemiology of S. sclerotiorum and examine numerous potential control methods for this pathogen, i.e., resistant cultivars, biocontrol, chemical control and seed treatments. A S. sclerotiorum isolate was obtained from sunflowers in Delmas, Mpumulanga, SA, in the form of sclerotia. This isolate was cultured and sent for identification and deposition in the Plant Protection Research Institute collection. This isolate, in the form of mycelia, was used for the duration of the study. For epidemiology studies, the effect of temperature, leaf wetness duration (LWD) and relative humidity (RH) were examined for their effect on rate of pathogen development. Twenty four combinations of temperature (19°C, 22°C, 25°C and 28°C), LWD (24, 48 and 72 hr) and RH (85 and 95%) were investigated. No interaction between temperature, LWD and RH was found. Temperature alone was the only factor that affected disease development. At 22°C, the rate of pathogen development (0.45 per unit per day) was significantly higher than all other temperatures, indicating that this temperature is optimum for disease development. Thirteen different soybean cultivars, i.e., LS6626RR, LS6710RR, LS666RR, LS555RR, LS6514RR, LS678RR, Prima 2000, Pan 626, AG5601RR, AG5409RR, 95B33, 95B53 and 96B01B, commercially grown in SA were investigated for their reaction to S. sclerotiorum. Prima 2000, 96B01B, 95B33 and AG5409RR were considered to be the least susceptible as they showed a significantly low rate of pathogen development (0.28, 0.28, 0.24, 0.23 per unit per day, respectively) and produced a significantly low number of sclerotia (3.03, 3.42, 3.21, 2.38, respectively). LS6626R and LS666RR may be considered most susceptible because of their significantly high rate of pathogen development (0.45 and 0.42 per unit per day, respectively) and high sclerotia production (8.16 and 7.50, respectively). Regression analysis showed a positive correlation coefficient (R2=0.71) between rate of growth of the pathogen and number of sclerotia produced, indicating that a higher rate is associated with a higher number of sclerotia. In vitro dual culture bioassays were performed to identify the biocontrol mechanisms of the biocontrol agents, EcoT® (a seed treatment) and Eco77® (a foliar treatment), against hyphae and sclerotia of S. sclerotiorum. Ultrastructural studies revealed that mycoparasitism is the probable mode of action as initial signs of hyphae of EcoT® and Eco77® coiling around hyphae of S. sclerotiorum were observed. Surface colonization of sclerotia by hyphae of EcoT® and Eco77® was also observed. In vitro antagonism of EcoT® against S. sclerotiorum on soybean seed was performed to determine pre-emergence and post-emergence disease. There was no significant difference in percentage germination between seeds treated with EcoT® and plated with the pathogen, untreated seeds and no S. sclerotiorum, and the control (i.e. no EcoT® and no pathogen). However, percentage non infected seedlings from seeds not treated with EcoT® was significantly lower, suggesting that EcoT® may be successfully used as a seed treatment for the control of SSR. In vivo trials were performed to investigate the effect of silicon (Si) alone, and in combination with Eco77®, on the effect of the rate of disease development. Plants treated with Eco77® had a significantly lower rate of disease development (0.19 per unit per day for plants treated with Eco77® and S. sclerotiorum and 0.20 per unit per day for plants treated with Eco77®, S. sclerotiorum and Si), compared to plants not treated with Eco77® (0.29 per unit per day for plants treated with S. sclerotiorum and 0.30 per unit per day for plants treated with S. sclerotiorum and Si), regardless of the application of Si. Similarly, plants treated with Eco77® had a significantly lower number of sclerotia (0.46 for plants treated with Eco77® and S. sclerotiorum and 0.91 for plants treated with Eco77®, S. sclerotiorum and Si), compared to plants not treated with Eco77® (3.31 for plants treated with S. sclerotiorum and 3.64 for plants treated with S. sclerotiorum and Si). The significantly lower rate of disease development coupled with a significant reduction in sclerotia showed that Eco77®, and not Si, was responsible for reducing the severity of SSR. A strong positive correlation between rate of disease development and the number of sclerotia produced (R2=0.79) was observed. For the investigation of various fungicides for the control of S. sclerotiorum, in vitro trials to determine the potential of three different fungicides at different rates, i.e., BAS 516 04F (133 g a.i. ha-1), BAS 516 04F (266 g a.i. ha-1), BAS 512 06F (380 g a.i. ha-1) and Sumisclex (760 g a.i. ha-1) were initially conducted. The control (non-amended PDA) had a significantly higher area under mycelial growth curve (243.0) than all fungicides tested. BAS 516 04F (at both concentrations) and BAS 512 06F completely inhibited the mycelial growth of S. sclerotiorum. Sumisclex inhibited the fungus by 89.07%. For in vivo trials, preventative treatments, i.e., BAS 516 04F (133 g a.i. ha-1), BAS 516 04F (266 g a.i. ha-1), BAS 512 06F (380 g a.i. ha-1), curative treatment, i.e. Sumisclex (760 g a.i. ha-1) and a combination preventative/curative treatment, i.e., BAS 512 06F (380 g a.i. ha-1)/Sumisclex (570 g a.i. ha-1) were investigated. No significant difference in disease severity index (DSI) was found between fungicide treatments and the inoculated control. BAS 512 06F and BAS 512 06F/Sumisclex had significantly lower grain yields (6.09 g and 5.96 g, respectively) compared to all other treatments. There was a positive correlation coefficient (R2=0.76), between DSI and grain yield, indicating that a high DSI is correlated with low grain yield. Trials to evaluate the effect of commercially available and currently unregistered seed treatments for the control of S. sclerotiorum on soybean seeds in vivo and in vitro were performed. Seed germination tests were performed to determine if seed treatments had any negative effects on seed germination in vitro. All seed treatments tested, i.e., BAS 516 03F (8, 16 and 32 ml a.i. 100 kg-1 seed), BAS 512 00F (7.5, 15 and 32 ml a.i. 100 kg-1 seed), Celest XL (100, 125, 200 and 250 ml a.i. 100 kg-1 seed), Sumisclex (5 and 10 ml a.i. 100 kg-1 seed), Benomyl (150 g a.i. 100 kg-1 seed), Captan (240 ml a.i. 100 kg-1 seed), Thiulin (180 g a.i. 100 kg-1 seed) and Anchor Red (300 ml a.i. 100 kg-1 seed), showed no negative effect on seed germination. For in vivo trials, BAS 516 03F (16 and 32 ml a.i. 100 kg-1 seed), BAS 512 00F (7.5, 15 and 32 ml a.i. 100 kg-1 seed), Celest XL (100, 125, 200 and 250 ml a.i. 100 kg-1 seed), Sumisclex (5 and 10 ml a.i. 100 kg-1 seed), Benomyl and Anchor Red had significantly similar percent germination and percent seedling survival as the untreated/uninoculated control. These seed treatments should be recommended for the control of S. sclerotiorum, as they protected seed during germination and subsequent seedling development. BAS 516 03F (8 ml a.i. 100 kg-1 seed) should not be recommended for the control of SSR, as it gave the lowest percent germination and percent seedling survival. The results presented in this thesis have helped to identify optimal environmental conditions for the development of S. sclerotiorum, which is important for the development of forecasting models for disease control. The least and most susceptible cultivars of those tested have been identified. Biocontrol using Eco77® as a foliar application showed great potential. The effect of Si needs to be further investigated, including the testing of more frequent applications and higher concentrations. The fungicides tested in this research did not show any potential for the control of SSR. However, the spray programme tested is for the control of soybean rust (Phakopsora pachyrhizi), and was investigated for its potential for the control of SSR. The spray programme, fungicide application and rating scale needs to be modified, to determine the true potential of these fungicides for the control of SSR. Numerous seed treatments have shown potential for the control of seed infection by SSR. Due to difficulties in producing ascospores, which are the primary source of inoculum for this pathogen in the field, all studies in this research were conducted with mycelia and not ascospores. The production, collection and storage of ascospores needs to be thoroughly investigated, and research conducted with ascospores. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2007.
83

Development of fungal biological control of four agriculturally important pests, Sitophilus oryzae, Trialeurodes vaporariorum, Planococcus ficus and Eldana saccharina, in South Africa.

Chambers, Craig Brian. January 2005 (has links)
The use of entomopathogenic fungi to control agriculturally important pests, both in greenhouses and in the field, has been demonstrated by various authors for a number of years. This has been brought about by the development of resistance in certain pest species to chemical applications and a growing public awareness of the safety implications of residual insecticides. Several entomopathogenic fungi were tested against four insect pests found in the Republic of South Africa (RSA), the greenhouse whitefly, Trialeurodes vaporariorum, the rice weevil, Sitophilus oryzae, the grapevine mealybug, Planococcusficus and the sugarcane stem borer, Eldana saccharina. Further concentration, temperature and humidity studies were conducted with selected isolates on the rice weevil, S. oryzae. Sitophilus oryzae is considered one ofthe most important pests of stored grain. Several fungal isolates were tested against the rice weevil, four of which, B1, PPRI 6690, PPRI 6864 and PPRI 7067, were selected for further testing based on the mortality results over a 21 d period. Varying conidial concentrations were applied and at high doses of 1x10 -6 conidia ml -1 with mortality rates of to 84% achieved. LT 50 values ranged from 6 - 68d. Increased spore concentration resulted in an increase in overall mortality. Temperature and humidity was found to affect the infection potential of the four isolates tested. Four temperatures ranging from 15 - 30°C were tested. The highest mortality rates were obtained at 25°C where mortality ranged from 46 - 65% in 14d. Mortality rates decreased with decreasing temperature, and no mortality was recorded at 30°C. Temperature was found to significantly alter the LT 50 values, increasing the LT 50 with decreasing temperatures. Decreasing the humidity resulted in an increased LT 50 and a reduction in the overall mortality rates. The mortality of S. oryzae ranged according to the RH and isolate. Isolates Bland PPRI 6690 resulted in the highest mortalities of 80 and 83% at 92.5% RH, with LT 50's of 6.3d and 6.4d, respectively. Several entomopathogenic fungi were tested against T vaporariorum, P. ficus and E. saccharina, three key pests of South African crops. Nine fungal isolates were tested against the greenhouse whitefly, T vaporariorum, with mortalities ranging from 26.7 - 74.7% over 14d. Beauveria bassiana Isolates Bl and PPRl 6690 produced the highest mortality rates and were recommended for further pathogenicity testing against T. vaporariorum. Planococcus ficus is a common pest ofvineyards in the Western Cape Province, South Africa. Nine entomopathogenic fungi were screened against P.ficus, only two of which produced mortality. Eldana saccharina is a stalk borer, which infests sugarcane in large areas of Southern Africa. Five isolates were tested against second and third instar larvae, three of which, B1, PPRl 6864 and PPRl 6690 resulted in mortalities. Mean percentage mortality was low for all three isolates. From the study it was evident that two of the isolates tested, Bland PPRI 6690 (B. bassiana), showed potential against three of the four pests, and two isolates of Lecanicillium lecanii caused mortality in P. ficus. Further research and understanding of the effect of environmental conditions, spore concentration and epizootic potential would result in the further development of these isolates as future biological control agents. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2005.

Page generated in 0.0512 seconds