• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 191
  • 175
  • 13
  • 4
  • Tagged with
  • 386
  • 386
  • 159
  • 109
  • 66
  • 65
  • 63
  • 40
  • 40
  • 39
  • 35
  • 31
  • 30
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Ultrastabilized boranes : a study into the synthesis, structure and reactivities of heterosubstituted organoboranes / by Cathryn Anne Slabber.

Slabber, Cathryn Anne. January 2011 (has links)
Three heterosubstituted boranes were successfully synthesized from the corresponding amines and borane dimethyl sulfide (BH3·DMS) in high yields, and were noted to be significantly more stable than the analogous dioxo-compounds. In situ 11B NMR spectroscopy indicated that the mechanism of the reaction to form these boranes contains two intermediates and supports a step-wise addition mechanism. 15N NMR spectroscopic analysis of the boranes identified a downfield shift in the location of the nitrogen signal from the typical amine region towards the aromatic region, supporting the theory of electron back-donation from the nitrogen lone pair to the boron atom’s vacant pz-orbital. The three boranes proved to be suitable hydroboration reagents under microwave-assisted conditions, with Wilkinson’s catalyst and a rhodium(I) carbonyl hydride catalyst both showing catalytic ability, however yields were noted to be dependent on the borane, the olefin and the catalyst. Twelve heterosubstituted boranes were successfully synthesized in high yields as products from condensation reactions between diamines and boronic acids both in solution and under microwave-assisted solvent-free conditions, which resulted in the reaction time being reduced from three hours to 15 minutes. 15N NMR spectroscopic analysis of these compounds showed a similar downfield shift in the amine signal as was observed previously, lending support to the electron back-donation explanation for the stability of these compounds. Crystals suitable for X-Ray diffraction analysis were grown for four 1,8-diaminonaphthalene-based boranes, and analysis of the data showed that the compounds are not planar as originally thought, rather there is a degree of torsion inherent in each of the structures, ranging from a slight (3-4%) to a substantial deviation (19-20%). It was shown that heterosubstituted boranes can be used in Petasis reactions as the organoborane reagent in a number of cases, although the reaction conditions used were not optimized for these compounds. Microwave irradiation was also successfully employed in the Petasis reactions, which reduced the reaction time from 48 hours to 10 minutes. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2011.
42

Molluscicides and other compounds from indigenous plants.

Kayonga, Louis. January 1996 (has links)
The use of plants with molluscicidal properties IS a simple, inexpensive and appropriate technology for focal control of the snail vector. Isolation and identification of the active constituents is essential for the study of their toxicities and stabilities under field conditions, for dosage purposes, for structureactivity investigations and for effects on snail metabolism or physiology. It is in this context, that an investigation into molluscicides and other compounds from indigenous plants has been carried out. From Apodytesdimidiata subsp. dimidiata, betulinic acid (53) genipin (49) and lO-acetyl genipin (58) have been isolated and the last two have proved to possess molluscicidal activity. Furthermore, 4-ethylcatechol (60) isolated from Gardenia thunbergia is one of the most powerful naturally-occurring molluscicides. / Thesis (M.Sc.)-University of Natal, Pietermatizburg, 1996.
43

Bioactive sesquiterpenoids from dicoma anomala subsp. gerrardii

Van der Merwe, Marina Mikhailovna. January 2008 (has links)
Through South Africa’s first collaborative project between a large scientific organisation, the Council for Scientific and Indust rial Research (CSIR), and the Traditional Healer’s Committee, Dicoma anomala was identified as a plant containing potent anticancer and antimalarial compo unds. In the process of evaluation, extracted plant material with reported or anecdotal use for the treatment of respiratory problems was found to have significant anticancer activity in vitro in a 3-cell line preliminary screen . The extract was further shown to have potent anticancer activity against the 60-cell line panel at the National Cancer Institute (NCI) in the USA. Bioassay-guided fractio nation, initially utilising an in vitro anticancer assay, and structural elucidation resul ted in two potent compounds with sesquiterpenoid skeletons (C-15 and C-30). The crystal structure of the C-15 compound, not published previously, was obtained. B oth compounds were further screened in an antiplasmodial assay during the cour se of the National Drug Development Platform (RSA: CSIR, MRC and UCT) proje ct, and were found to have potent activity against Plasmodium falciparum (a malaria protozoon). Although the C-15 compound had a selectivity index (SI) of 10, suggesting that it was suitable for subsequent development, the dimer was highly toxic (SI index of 1), limiting opportunities for future development. A further study of the structure- activity relationship (SAR), which was initiated fo r the C-15 compound, showed that removal of each unsaturated structural compone nt decreased activity 10–fold in both bioassays. Additional investigations were c arried out into amino-acid Michael adducts with the exocyclic double bond of t he C-15 sesquiterpenoids, and the products were characterised by NMR spectroscopy and mass spectrometry. A similar investigation, involving the conjugate addi tion of simple amines, was undertaken in an attempt to enhance the bioavailabi lity of the parent sesquiterpenoid. Three diethylamine derivatives wer e prepared and characterised. A general 10-fold drop in the bioactivity of these “pro-drug” derivatives in both assays was observed. Finally, the C-15 compound was tested in vivo in the Plasmodium berghei murine malaria model and was found to have some eff ect on the survival rates of the laboratory animals when c ompared with the control. A possible mode of action is suggested based on the e xperimental and published bioactivity data. Further studies to improve the bi oactivity and alternative design of future in vivo studies are also proposed. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2008.
44

Synthesis and characterization of iron amine complexes.

M'thiruaine, Cyprian Muturia. 03 October 2013 (has links)
The organometallic Lewis acid [(η5-C5H5)(CO)2Fe]BF4 reacts with excess dry diethyl ether at low temperatures to form the novel labile complex [(η5-C5H5)(CO)2Fe(OEt2)]BF4 which in turn serves as a precursor in the syntheses of various cationic dicarbonylcyclopentadienyliron complexes. The reactions of [(η5-C5H5)(CO)2Fe(OEt2)]BF4 with various 1-alkylamines, α,ω-diaminoalkanes, N-heterocyclics and heterofunctional amine ligands, as well as olefins, have been investigated. Reactions with 1-alkylamines and α,ω-diaminoalkane ligands lead to a series of novel monuclear and dinuclear complexes of the types [(η5-C5H5)(CO)2FeL]BF4 and [{(η5-C5H5)(CO)2Fe}2(μ-L)](BF4)2, respectively. The reaction of [(η5-C5H5)(CO)2Fe(OEt2)]BF4 with N-heterocyclic ligands such as 1,3,5,7-tetraazaadamantane (HMTA) and 1,4-diazabicyclo[2.2.2]octane (DABCO) give dinuclear complexes [{(η5-C5H5)(CO)2Fe}2(μ-L)](BF4)2 and monuclear complexes [(η5-C5H5)(CO)2FeL]BF4 (L = HMTA, DABCO). Its reaction with 1-methylimidazole (1-meIm) affords only the monuclear complex [(η5-C5H5)(CO)2Fe(1-meIm)]BF4 in which the coordination of 1-methylimidazole is via the sp2-N. The reaction with heterofunctional amine ligands is highly regioselective with the cation [(η5-C5H5)(CO)2Fe]+ showing higher affinity for NH2 than π-bonded, O or CN functionalities. Besides amines, [(η5-C5H5)(CO)2Fe(OEt2)]BF4 reacts with olefins and HCOOH to form complexes of the type [(η5-C5H5)(CO)2Fe(η2-olefin)]BF4 and [{(η5-C5H5)Fe(CO)2}2(μ-OCHO)]BF4, respectively. For comparison of steric and electronic effects, analogous pentamethylcyclopentadienyl amine complexes were synthesized from the THF complex [{η5-C5(CH3)5}(CO)2Fe(THF)]BF4. The reaction of 3-aminoprop-1-ene with the etherate complexes [(η5-C5R5)(CO)2Fe(E)]BF4 (R = H: E= Et2O; R = CH3: E = THF) led to air stable complexes [(η5-C5R5)(CO)2Fe(NH2CH2CHCH2)]BF4 (R = H, CH3), which in turn react with a mole equivalent of the etherate complexes to give dinuclear complexes of the type, [(η5-C5R5)(CO)2Fe(NH2CH2CHCH2)Fe(CO)2(η5-C5R'5)](BF4)2 (R not necessarily equal to R'). They also undergo halogenation to give the chiral dihalopropylamino complexes [(η5-C5R5)(CO)2Fe(NH2CH2CH(X)CH2(X))]BF4 (R=H, CH3; X = Cl, Br). The reaction of the dinuclear complex [{(η5-C5H5)(CO)2Fe}2(NH2CH2CHCH2](BF4)2 with NaI in acetone gives [(η5-C5H5)(CO)2Fe(NH2CH2CHCH2)]I and [(η5-C5H5)Fe(CO)2I]. All these complexes have been fully characterized by 1H NMR, 13C NMR, IR spectroscopy and elemental analysis. The mass spectra of 1-aminoalkane and diaminoalkane complexes have also been recorded and are discussed. The structures of 16 synthesized compounds have been confirmed by single crystal X-ray crystallography. Most of the amine complexes are water-soluble and some undergo counteranion exchange with sodium tetraphenylborate in both aqueous and organic media to give BPh4- salts. / Thesis (Ph.D.)-University of KwaZulu-Natal, Westville, 2011.
45

The preferential oxidation of CO nickel oxide catalysts and the doping effects of platinum in hydrogen rich streams.

Mohamed, Ziyaad. 07 April 2014 (has links)
Hydrogen has now become a suitable candidate for alternative energy generation for small scale applications with the aid of fuel cells. On-board production of hydrogen from methane is the most preferred method via a series of catalytic reactions. However, the carbon monoxide (CO) concentrations following these reforming steps is still too high (±1 %) and is detrimental to the anode of the fuel cell. For maximum output and efficiency of the fuel cell CO concentrations must be reduced to less than 10 ppm. Preferential oxidation (PROX) following the water-gas shift reaction is a promising method that could be employed to reduce the CO content in the reformate gas. This project entails the synthesis, characterization and testing of nickel based catalysts for the oxidation of CO in H₂ rich streams, and to dope with Pt to determine the effects of the platinum group metal on the catalyst for this reaction. A series of NiO/Al₂O₃, Pt/Al₂O₃ and Pt/NiO/Al₂O₃ catalysts were prepared by incipient wetness technique. These catalysts were characterized by TGA, ICP-OES, XRD, BET, TPR, TPD, N₂ adsorption desorption isotherms, CO chemisorptions, SEM-EDX and TEM. The catalysts were then tested for the oxidation of CO in H₂ rich streams. XRD patterns of the catalysts indicated the presence of NiO and PtO phases on the respective supports and in situ redox reactions showed catalysts had reversible phase changes (oxide and metallic) that were stable. N2 adsorption-desorption isotherms indicated the presence of mesoporous materials for all catalysts studied. Impregnation of Pt on the NiO/Al₂O₃ catalysts promoted the reduction of the catalyst to lower temperatures. All catalysts were stable for long periods of time in the presence of H₂ at 150 °C. NiO/Al₂O₃ catalysts were not very active for the preferential oxidation of CO within its stipulated temperature ranges giving the highest CO conversion at 290 °C of 11 % with the selectivity towards CO₂ of ± 25 %. The Pt/Al₂O₃ showed much better activity at higher PROX temperatures compared to the NiO/Al₂O₃ with regards to CO conversion and selectivity towards CO₂. The highest CO conversion obtained within the PROX range was ±56 % with a selectivity towards CO₂ of 68 % at 200 °C. The Pt/NiO/Al₂O₃ showed a synergistic effect, with much higher CO₂ selectivity and CO conversion within the PROX temperature ranges compared to both mono-metallic catalysts studied. The highest CO conversion obtained for this catalyst was at 180 °C of 99.9 % with a selectivity towards CO₂ of 74 %. / Thesis (M.Sc.)-University of KwaZulu-Natal, Westville, 2012.
46

The oxidative dehydrogenation of n-Hexane and n-Octane over vanadium magnesium oxide catalysts.

Chetty, Jonathan. January 2006 (has links)
Vanadium magnesium oxide (VMgO) catalysts with different vanadium loadings were synthesized and tested for catalytic activity using pure «-hexane and «-octane as feeds. High surface area catalysts were obtained by the wet impregnation of magnesium oxide with an aqueous ammonium metavanadate solution. The optimum loading of vanadium was shown to be 19 % (calculated as weight % of V205). Catalysts were characterized by x-ray diffraction (XRD), inductively coupled plasma - atomic emission spectroscopy (ICP-AES), Brunauer-Emmet-Teller (BET) surface area, differential scanning calorimetry - thermogravimetric analysis (DSC-TGA), Fourier transform infrared spectroscopy (FTIR), laser Raman spectroscopy (LRS), x-ray induced photoelectron spectroscopy (XPS), energy dispersive x-ray spectroscopy (EDS) and scanning electron microscopy (SEM). Magnesium oxide (MgO) and magnesium orthovanadate (Mg3(V04)2 were the only phases observed in each catalyst. VMgO catalysts were tested under both oxygen-rich and oxygen-lean conditions. «-Hexane as feed yielded benzene, 1-hexene, 2-hexene, propane, propene, carbon oxides and water as products, n- Octane as feed yielded styrene, ethylbenzene, xylene, benzene, octenes, carbon oxides and water. 19VMgO was promoted with different loadings of molybdenum oxide (M0O3), cesium oxide (Cs20), antimony oxide (Sb20s), niobium oxide (Nb205), bismuth oxide (Bi203) and tellurium oxide (Te02). The promoted catalysts were tested in specially designed and constructed parallel fixed bed continuous flow reactors. / Thesis (Ph.D.)-University of KwaZulu-Natal, 2006.
47

Influence of bridging groups on the reactivity of dinuclear platinum (II) complexes with bis(2-pyridylmethyl)amine chelate headgroups.

Mambanda, Allen. January 2009 (has links)
The influence on the reactivity of both the length as well as the structural nature of diamine bridges linking dinuclear Pt(II) complexes with homotopic bis(2-pyridylmethyl)amine headgroups has been investigated. For this purpose, three sets of square-planar Pt(II) complexes sharing a common non-labile bis(2-pyridylmethyl)amine chelate were synthesized and characterized by various spectroscopic methods. The substitution of the coordinated aqua ligands by three thiourea nucleophiles of different steric demands was studied in acidic aqueous medium under pseudo first-order conditions. The reactions were studied as a function of concentration, temperature and in some cases under an applied pressure using the standard stopped-flow technique and UV-visible spectrophotometry. Their thermodynamic properties were investigated by studying the acid-base equilibria of the coordinated aqua ligands using a spectrophotometric titration method. DFT Quantum mechanical calculations were also performed to determine their geometry-optimized structures and energies of the frontier molecular orbitals. The first set of Pt(II) complexes comprise dinuclears, all bridged by a flexible α,ω-alkyldiamines. The second set of complexes is Pt(II) amphiphilic mononuclear analogues of the former set, formed intuitively by excising off one of the Pt(II) chelate headgroups. The last set of complexes comprises Pt(II dinuclear complexes which are structurally related to the first set, but are linked by relatively rigid linkers, which are made up of either phenyldiamine or diaminocyclohexane fragments. In two of the complexes, a single methylene spacer (CH2 In general, the substitution reactions of the coordinated aqua ligands of all the Pt(II) complexes by the three sulfur donor nucleophiles (Nu) proceed via a two-step reaction pathway. The first step, whose rate constant is denoted in subsequent text as k) group is incorporated between the rigid moieties of the diamine bridge so as to elongate the average distances separating their Pt(II) atoms as well as to modulate the rigidity of the complexes. For comparison purposes, two monomeric analogues bearing the phenyl and cyclohexyl appended groups, respectively, were studied and reported together with these complexes. 2(1st), involves the substitution of the aqua ligands. The second step, induced by the coordination of the strong labilizing thiourea nucleophiles and whose rate constant is denoted in the text as k2(2nd), is ascribed to the dechelation of the one of the cis-coordinated pyridyl units. Thus, the substitution of the aqua ligands and the subsequent dechelation of the pyridyl units, can be expressed as kobs(1st/2nd) = k2(1st/2nd)[Nu] for all the reactions. Negative entropy of activation, negative volume of activation (in cases where measurements were carried out) and second-order kinetics for the substitution reactions all support an associative mode of activation. The substitution reactivity of all the dinuclear complexes is influenced to a greater extent by the steric influences conferred by the bridge as well as a weak electronic effect. The steric influences are mutual, axially exerted and seemingly unique to the square-planar terdentate chelate headgroups. The steric influences depend strictly on length of the diamine (i.e., the average distances separating the Pt centres of the dinuclears) as well as molecular symmetries and shapes of the complexes. The molecular symmetries and hence the shapes of the complexes depend on the parity of the connecting bonds in the diamine (whether even or not). If the connecting bonds of the bridges are even, C2h structures and hence slip-up molecular geometry are preferred. Their overlap geometries cause mutual and axial steric influences on the Pt(II) square-planar chelates which retard substitutional reactivity when the bridge is short. When odd, bowl-shaped complexes of the C2v point group symmetry are preferred in which the axial steric influences are absent at their Pt(II) chelates. In addition their bowl geometry causes an entrapment of the incoming nucleophiles, causing unusually high reactivity when compared to their even-bridged counterpart. For both molecular symmetries (C2h or C2v), the reactivity of the dinuclear complex depends on the average distances separating the Pt(II) centres of the dinuclears. In the former type of complexes, when the average distances separating their Pt(II) centres are long, the axial steric influences at each Pt(II) chelate due to their C2h The chain length as well as the structural make-up of the linker also determines the amount of electron density donated inductively from the linker to the Pt ions as well as the effective nuclear charge at each Pt(II) centre due to charge addition. These are two opposing overlap geometry is weakened, leading to enhanced reactivity as the chain length is increased. In the latter type of complexes, this weakens the ‘entrapment’ effect of their bowl-shaped geometry, resulting in a steady decrease in reactivity when the chain length of the linker is increased. In addition rigidity and planarity within the backbone of the diamine bridge has been found to distort the bowl cavity causing weakening of the ‘entrapment effect’ resulting in the lower rates than expected. iv factors which also influence the rate of substitution in these complexes to some extent. The inductive effect as well as the presence of a domineering steric influence in the C2h overlap geometry was verified by studying the reactivity of the analogous amphiphilic Pt(II) complexes. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2009.
48

Influence of bridging groups on the reactivity of dinuclear platinum (II) complexes with bis(2-pyridylmethyl)amine chelate headgroups.

Mambanda, Allen. January 2009 (has links)
The influence on the reactivity of both the length as well as the structural nature of diamine bridges linking dinuclear Pt(II) complexes with homotopic bis(2-pyridylmethyl)amine headgroups has been investigated. For this purpose, three sets of square-planar Pt(II) complexes sharing a common non-labile bis(2-pyridylmethyl)amine chelate were synthesized and characterized by various spectroscopic methods. The substitution of the coordinated aqua ligands by three thiourea nucleophiles of different steric demands was studied in acidic aqueous medium under pseudo first-order conditions. The reactions were studied as a function of concentration, temperature and in some cases under an applied pressure using the standard stopped-flow technique and UV-visible spectrophotometry. Their thermodynamic properties were investigated by studying the acid-base equilibria of the coordinated aqua ligands using a spectrophotometric titration method. DFT Quantum mechanical calculations were also performed to determine their geometry-optimized structures and energies of the frontier molecular orbitals. The first set of Pt(II) complexes comprise dinuclears, all bridged by a flexible α,ω-alkyldiamines. The second set of complexes is Pt(II) amphiphilic mononuclear analogues of the former set, formed intuitively by excising off one of the Pt(II) chelate headgroups. The last set of complexes comprises Pt(II dinuclear complexes which are structurally related to the first set, but are linked by relatively rigid linkers, which are made up of either phenyldiamine or diaminocyclohexane fragments. In two of the complexes, a single methylene spacer (CH2) group is incorporated between the rigid moieties of the diamine bridge so as to elongate the average distances separating their Pt(II) atoms as well as to modulate the rigidity of the complexes. For comparison purposes, two monomeric analogues bearing the phenyl and cyclohexyl appended groups, respectively, were studied and reported together with these complexes. In general, the substitution reactions of the coordinated aqua ligands of all the Pt(II) complexes by the three sulfur donor nucleophiles (Nu) proceed via a two-step reaction pathway. The first step, whose rate constant is denoted in subsequent text as k2(1st), involves the substitution of the aqua ligands. The second step, induced by the coordination of the strong labilizing thiourea nucleophiles and whose rate constant is denoted in the text as k2(2nd), is ascribed to the dechelation of the one of the cis-coordinated pyridyl units. Thus, the substitution of the aqua ligands and the subsequent dechelation of the pyridyl units, can be expressed as kobs(1st/2nd) = k2(1st/2nd)[Nu] for all the reactions. Negative entropy of activation, negative volume of activation (in cases where measurements were carried out) and second-order kinetics for the substitution reactions all support an associative mode of activation. The substitution reactivity of all the dinuclear complexes is influenced to a greater extent by the steric influences conferred by the bridge as well as a weak electronic effect. The steric influences are mutual, axially exerted and seemingly unique to the square-planar terdentate chelate headgroups. The steric influences depend strictly on length of the diamine (i.e., the average distances separating the Pt centres of the dinuclears) as well as molecular symmetries and shapes of the complexes. The molecular symmetries and hence the shapes of the complexes depend on the parity of the connecting bonds in the diamine (whether even or not). If the connecting bonds of the bridges are even, C2h structures and hence slip-up molecular geometry are preferred. Their overlap geometries cause mutual and axial steric influences on the Pt(II) square-planar chelates which retard substitutional reactivity when the bridge is short. When odd, bowl-shaped complexes of the C2v point group symmetry are preferred in which the axial steric influences are absent at their Pt(II) chelates. In addition their bowl geometry causes an entrapment of the incoming nucleophiles, causing unusually high reactivity when compared to their even-bridged counterpart. For both molecular symmetries (C2h or C2v), the reactivity of the dinuclear complex depends on the average distances separating the Pt(II) centres of the dinuclears. In the former type of complexes, when the average distances separating their Pt(II) centres are long, the axial steric influences at each Pt(II) chelate due to their C2h overlap geometry is weakened, leading to enhanced reactivity as the chain length is increased. In the latter type of complexes, this weakens the ‘entrapment’ effect of their bowl-shaped geometry, resulting in a steady decrease in reactivity when the chain length of the linker is increased. In addition rigidity and planarity within the backbone of the diamine bridge has been found to distort the bowl cavity causing weakening of the ‘entrapment effect’ resulting in the lower rates than expected. The chain length as well as the structural make-up of the linker also determines the amount of electron density donated inductively from the linker to the Pt ions as well as the effective nuclear charge at each Pt(II) centre due to charge addition. These are two opposing factors which also influence the rate of substitution in these complexes to some extent. The inductive effect as well as the presence of a domineering steric influence in the C2h overlap geometry was verified by studying the reactivity of the analogous amphiphilic Pt(II) complexes. / Thesis (D.Phil.)-University of KwaZulu-Natal, 2009. / National Research Foundation and University of KwaZulu-Natal
49

Experimental and theoretical studies of molecular complexes.

Govender, Maganthran Ganesan. January 1999 (has links)
The binary complexes comprising the molecules hydrogen fluoride, hydrogen chloride, water, hydrogen sulphide, ammonia, phosphine, methane and silane have been studied by ab initio molecular orbital theory thus generating a matrix of eight by eight molecular complexes. The structures, energetics and vibrational spectra of these molecular complexes, both homodimers and heterodimers, have been studied at the second order level of Møller-Plesset perturbation theory using the 6-31G** basis set, by means of the Gaussian 92 computer program. The self consistent field interaction energies have been further dissected into their various components according to the Morokuma scheme, using the Monstergauss computer program. An analysis of the computed interaction energies of the complexes has also been carried out. A complete normal mode analysis, identifying the normal modes of Vibration, has been carried out using the Vibra program. The infrared spectra of some of the associated species have also been determined experimentally by means of the matrix isolation technique using argon and nitrogen as matrix gases. The combined use of the theoretical and experimental approaches has enabled reliable vibrational assignments to be made, which have been used in determining the molecular structures of the aggregates formed on complexation. / Thesis (Ph.D.)-University of Natal, Durban, 1999.
50

Supramolecular resorcin [4] arene-capped porphyrins : ligands towards homogeneous catalysis

January 2008 (has links)
The synthesis of cavitand-capped porphyrin ligands, with a view towards their potential as ligands in homogeneous catalysis, is described. The ligand apertures, one of which is outlined in the figure below, are focal with the aim of synthesising a ligand which can control access to the active site of the porphyrin via these apertures Synthesis of the target ligand (where R' = CH2 in the figure presented) was attempted via two pathways. Synthesis commenced by using an in situ protocol, which used successive functionalisation of the cavitand structure towards the required aldehyde precursor for porphyrin formation. It was found that subsequent in situ cyclisation and porphyrin formation was hindered by steric factors, arising directly from the short -CH2O- bridges used to link the cavitand to the porphyrin. Ligand synthesis was thus unsuccessful. In a second approach, the porphyrin was synthesised in isolation before being coupled with the cavitand in a direct capping protocol, which gave more promising results. In the case of R = C11H23 (in the figure above), preliminary UV-Vis analysis indicated a successful synthesis. Subsequent analysis of the reaction product by NMR techniques and mass spectrometry could not conclusively confirm the synthesis of the target ligand. The synthesis could therefore not be deemed a success; conceivably the short bridge length being the decisive factor once more. Computational chemistry was used to investigate synthetic results, and therefore the viability of using the -CH2O- bridges to afford limited access to the porphyrin active site. By using molecular mechanics, -CH2O- bridges were found to be too short, giving an aperture of insufficient size to enable only the terminus of a linear paraffin to gain access to the inner cavity of the ligand. Further investigation using molecular dynamics indicated that a ligand bearing bridges four or five atoms in length would afford an aperture of the desired size to accommodate the terminus of a paraffin exclusively. Consequently, synthesis was redesigned towards the preparation of two new ligands, bearing - O(CH2)2O- (four atom, R' = O(CH2)2 in the figure above) and -O(CH2)3O- (five atom, R' = O(CH2)3 in the figure above) bridges. Using 2-phenylethyl feet (R = CH2CH2C6H5 in the figure presented) and adopting the in situ synthetic protocol, both ligands were successfully synthesised. Characterisation using UV-Vis and NMR spectroscopic techniques, as well as mass spectrometry confirmed that both ligands had been obtained pure. Additionally, the in situ cyclisation (in both ligands) was performed via the use of microwave heating, a technique hitherto unreported. A viable synthetic route was thus established for the preparation of two new cavitand-capped porphyrin ligands towards their use in size-selective catalysis. In addition, a number of crystal structures of synthetic intermediates are described, five of which are newly reported. These illustrated notable structural features regarding resorcin[4]arene cavitands and their abilities as host molecules. In particular, the structure of the aldehyde precursor to capped porphyrin formation following the (initial) in situ synthetic protocol was significant in illustrating the reason as to why in situ cyclisation was unsuccessful for the synthesis involving -CH2O- bridges. / Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2008.

Page generated in 0.0445 seconds