• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 15
  • Tagged with
  • 69
  • 69
  • 69
  • 36
  • 35
  • 32
  • 26
  • 26
  • 17
  • 15
  • 13
  • 13
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Effects of herbivores, fire and harvesting on the population dynamics of Acacia drepanolobium sjoestedt in Laikipia, Kenya.

Okello, Bell Dedan. January 2007 (has links)
Effects of herbivory, fire, and tree harvesting on Acacia drepanolobium were studied using plant population dynamics as the philosophical basis of research. Specifically, growth rates, chrono-sequence of re-growth, biomass and charcoal yield, herbivory, flowering, seed production, germination, mortality and the ants of Acacia drepanolobium were studied in the black cotton ecosystem of Mpala Research Centre, Laikipia, Kenya, between September 1995 and December 2000. Acacia drepanolobium was the most abundant tree or shrub with densities ranging from 80% to 98% of all the overstorey species, but it was the least browsed of all the trees and shrubs in the black cotton ecosystem, ranging from a mean of 7.2% to 9% of the individuals browsed. The tree is inhabited by four Acacia ant species, Crematogaster mimosae, Crematogaster sjoestedti, Crematogaster nigriceps, and Tetraponera penzigi, which are believed to be obligate, and which probably play a role in the low browsing rates observed. Six herbivore treatments replicated three times (no herbivores - O; only cattle - C, all herbivores allowed - MWC {control}, mega-herbivores {elephants and giraffe} and wildlife {W} – MW only, wildlife – W - only {all wildlife except mega-herbivores} and wildlife and cattle only - WC) was the main experimental design used in understanding the dynamics of the tree species under influence of different herbivores. Mean annual height growth of A. drepanolobium trees was 24.9 cm yr-1, while the mean Relative Growth Rates ranged from 14.6 x 10 –3 cm cm-1 yr-1 to 18.7 x 10 –3 cm cm-1 yr-1. Growth rates were different among the herbivore treatments and between seasons. Shoots of the tree grew by a mean range of 6.8 cm to 9.1 cm, were similar among the treatments but differed among the seasons. Canopy volume increased over time although it fluctuated with seasons, suggesting an increase in bushiness of A. drepanolobium in the ecosystem. Trees occupied by different ant species showed differences in shoot density (number of new shoots per twig), being greater in Crematogaster nigriceps occupied trees compared with the other ant species. Swollen thorn (gall) density per unit of twig length was greatest in treatments with megaherbivores; these galls were significantly larger on trees occupied by the ant Crematogaster nigriceps. Treatments with herbivores were more spinescent than the total exclusion treatment. Spine lengths ranged from 0.8 to 2.4 cm, and recorded a progressive reduction of up to 36.36.7% in treatments without browsers suggesting a relaxation of induced defence in A. drepanolobium. Flowering in A. drepanolobium was low and staggered over the study period ranging from 0.8% to 2.0% of the trees with no differences among the treatments suggesting that the level of herbivory was not sufficient to influence reproduction of the tree in the experimental site. Consequently, seedling recruitment was very low within the experimental site. However, a nearby site recorded flowering of between 22.7% and 93.5%. Mean pod production, mean number of seeds per tree and mean weight of pods and seeds had a positive linear relationship with tree density (R2=0.77, 0.81 and 0.81 respectively). Trees occupied by Crematogaster mimosae were the most likely to flower (68%) compared with C. nigriceps (5.8%), again suggesting that ants had an effect on the tree’s reproduction. Mortality of A. drepanolobium trees averaged 0.9% to 4.2% over the study period, being significantly greater in treatments with mega-herbivores. Seedling survival ranged from 42% to 75%, being greatest in the cattle only treatment. Between 30% and 100% (mean 67.2%), of A. drepanolobium seeds were attacked by a bruchid beetle (Bruchus sp.). Seeds attacked by bruchid beetles had significantly lower germination rates. Similarly, seeds passed through a fire also recoded significantly low germination rates compared with normal seeds. Fire (3.4%) and bruchid beetles (20.7%) germination compared with (control) undamaged seeds (84%) play an important role in the population dynamics of A. drepanolobium. Fewer A. drepanolobium seeds (33%) were recovered from the surface compared with buried (72%) seeds after a fire, indicating seed loss from the effect of fire and predation. In the burn experiment, fire top-killed 16% of A. drepanolobium trees but no tree or seedling was killed. On the other hand, fire significantly reduced the density of non-A. drepanolobium trees by between 50% and 100%, with none of them showing signs of coppicing after the fire unlike top-killed A. drepanolobium trees. Woody biomass from A. drepanolobium was strongly related to stem diameter (Y = 3.77x + 1.17, R2 = 0.96, P < 0.001). Mean charcoal production from earthen kilns was 2.83 Mg ha- 1. Height and stem diameter in coppicing stands increased at a mean rate of 28.6 cm yr-1 and 0.7 cm yr-1 respectively. Biomass in coppicing stands accumulated at a mean rate of 1.3 Mg ha-1 yr-1 in a 14-year period, yielding dry biomass of 18.26 Mg ha-1 useable wood that can produce a minimum of 3.0 Mg ha-1 of charcoal. This study shows that Acacia drepanolobium populations are affected by several factors including herbivory, fire and ants. The population dynamics of this tree shows that it can be harvested for sustainable charcoal yield over a 14-year cycle. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2007.
52

Above- and belowground competition in Savanna systems.

Payne, Michelle Jennifer. January 2008 (has links)
The structure and composition of savanna vegetation is influenced by resource availability and disturbance. Grasses, a major component of savannas, influence this resource availability by competing directly with trees for light, water and soil nutrient resources. The direct causes of bush encroachment are not always apparent, but are commonly ascribed to overgrazing and consequent decreased grass competition. The interaction, both above and belowground, between tree and grass seedlings and the surrounding grass sward is dependant on many factors, such as soil depth, seedling species and sward composition. These factors, as well as the presence or absence of defoliation, in the form of grazing or fire dictate whether the system will remain in a transition state as savanna or move towards a stable woodland state. The major competitive effects experienced by the tree seedlings were dependant on grass species and nutrient level. A. nilotica was affected by aboveground competition while A. karroo was affected by belowground competition. E. capensis caused the greatest decrease in A. karroo plant biomass. Both E. capensis and H. hirta had large competitive effects on the aboveground biomass of A. nilotica, while S. africanus had the greatest effect on belowground biomass. Increasing nutrient availability resulted in an increase in the competitive effect exerted on A. karroo, while little to no change was seen in the competitive effect exerted on A. nilotica. Soil depth constrained plant size in both tree species. The intensity of belowground interactions on tree biomass was unaffected by soil depth, while aboveground competition had a significant effect on shallow soils. Belowground competition was also of greater importance than aboveground competition in dictating tree seedling height. Grass seedlings growing on all three soil depths differed in mean mass, with E. racemosa having the least mass and T. triandra having the greatest. Simulated grazing by cutting the surrounding sward resulted in biomass increases in all three grass species. Changes in savanna composition and structure are thus likely to be influenced by initial species composition and soil depth and soil nutrient composition. While grazing creates niches for grass seedling establishment, heavy grazing has been observed to increase grass seedling mortality. Encroachment is thus more likely to occur on intensively grazed shallow and deep soils than on medium depth soils. This highlights the importance of ensuring the grass sward remains vigorous by resting and monitoring stocking rates to ensure veld is not over-utilized. It is then possible to maintain some form of tree-grass coexistence at a level where available grazing is not compromised. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2008.
53

Aspects of the ecology of grass seedlings used for revegetation of degraded land.

Ellis, Meghan Jane. January 2010 (has links)
As restoration ecology has matured as a science there has been increased interest in the relationship between species diversity and landscape health. Degraded landscapes tend to be resource poor, which limits species diversity as only species which are capable of growing and reproducing in these resource limiting environments can inhabit the area. Additionally, the established species are strong competitors for resources and will exclude, by way of inter-specific competition, weaker competitor species attempting to invade the degraded area. Several studies have demonstrated that with increased species diversity the overall productivity and functionality of the grassland increases. Seedling development and competitive interactions between grass seedlings has a significant impact on the final community structure and species diversity. It is for this reason that aspects of the ecology of grass seedlings were investigated. The growth and competitiveness of Chloris gayana, Cynodon dactylon, Digitaria eriantha, Eragrostis curvula and E. tef seedlings were determined under three environmental stimuli, namely nitrogen availability, light availability and exposure to plant-derived smoke (in the form of smoke-infused water). The primary conclusion from the competition experiments was that the species can be split into superior and inferior competitors at the seedling stage. Chloris gayana, E. curvula and E. tef were the most competitive seedlings as they had the largest negative effect on the growth of other species (high nitrogen Relative Interactive Index (RII) = -0.449, -0.203 and -0.379 respectively) and they were least affected by competition (high nitrogen RII = -0.251, -0.168 and -0.248 respectively). The calculated RII indicates the strength of the competitive interactions, the more negative the RII the stronger the competitive interaction. Nutrient availability had limited effect on the competitive hierarchy of the tested species. Chloris gayana seedlings, however, increased in competitiveness with an increase in available nutrients. In other words, there was a decreased negative response to competition in a high nutrient environment (high nitrogen RII -0.251, no nitrogen RII -0.605). When D. eriantha was grown under varying shade, nutrient and competition levels it was evident that the primary stress factor was light deficiency (p<0.001), and nutrient availability had no affect on seedling growth (p=0.069). Smoke-infused water had no consistent affect on the germination success or the seedling’s root and shoot vigour for the five grasses. These results indicate that the introduction of a “2-phase” or “multi-phase” restoration plan may be beneficial for the development of species diverse rehabilitated grasslands. Manipulating the time and space that the different species are planted, or the distribution of nutrient concentration over the area, may increase the survivorship of all the species that are introduced to a restoration site. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2010.
54

Vegetation change over fifty years in humid grasslands of KwaZulu-Natal (Acocks's sites)

Marriott, David John. 23 December 2013 (has links)
Eighty three of Acocks's sites, originally surveyed about 50 years ago, were resurveyed in 1996 to determine the extent of grassland change in the humid grasslands of KwaZulu-Natal. Sites were relocated using 1:10 000 scale ortho-photos and present land cover was determined for each site. Forty six of the sites that were still under original grassland were further examined to determine present species composition. A survey method was designed that would emulate Acocks's data and comparisons were drawn between original and present species composition. These differences were then analysed together with some environmental variables to try to determine the factors which had the most influence on the change and which environment and management factors are related to the present variation in composition among sites. Of the 83 sites, 26 had changed from natural vegetation to some other form of agriculture such as forestry or cultivation. Most of this change had occurred in the Natal Mistbelt Ngongoni Veld where large areas are forested. Cultivation is found predominantly in the communal areas where subsistence, cultivation practices are employed. The remainder of the sites had changed significantly in terms of their species composition. The most pronounced change had occurred in areas under communal tenure although significant changes had occurred in the commercially farmed areas. The direction of change was also more consistent towards species that commonly predominate in heavily grazed areas in the communal areas compared to the commercial areas. The exact reasons for this were unclear but this could possibly be attributed to heavier stocking rates in the communal areas. Change in floristic composition was also more pronounced at lower altitudes where the mean annual rainfall is lower and the mean annual temperature higher. This could possibly be a result of the vegetation at lower altitudes being less stable and thus less resistant to change. Basal cover differed significantly between commercial and communally grazed sites. Lower basal cover was found in the communal sites where intensive grazing limits the growth of individual tufts. Number of species found at each site did not differ significantly between communal and commercially grazed sites. This study was also a practical implementation of the resurveying of Acocks's sites and the original data set was found to be a useful baseline data set to determine coarse long-term changes in the vegetation. / Thesis (M.Sc.)-University of Natal, Pietermaritzburg, 1997.
55

Influence of drought or elephant on the dynamics of key woodland species in a semiarid African savanna.

MacGregor, Shaun Donovan. January 2000 (has links)
Extensive drought - and elephant-related dieback of Colophospermum mopane and Acacia tortitis, respectively, offered an opportunity for increasing understanding of the causes of drought-related patch dieback, the factors influencing elephant utilization of woody plants, and the response of woody plants to both aforementioned determinants of savanna structure and function. The dendrochronological analysis of both species was undertaken to estimate potential rates of replacement, following extensive mortality. Areas of discrete dieback were compared with adjacent paired areas of 'healthy' vegetation, which revealed, on average, 87% and 13% loss of basal area by mortality, respectively. 'Live' and 'dead' plots did not differ in soil type, topography or mean slope, but differed in vegetation structure, soil surface condition, and soil chemistry. Although there was evidence of self-thinning, neither inter - nor intra-specific competition explained dieback. 'Dead', by comparison with 'live' plots, had changed from functioning as sinks of sediment and water to sources, were less likely to retain water because of a poor soil surface condition, and were predisposed to drought effects because of a greater proportion of fines, and Na concentration. Dieback resulted from insufficient soil water for survival during a drought owing to the development of a dysfunctional landscape during 50 years of livestock ranching. Spatial heterogeneity within a landscape was suggested to enhance woodland resilience to severe droughts by ensuring the survival of plants in run-on sinks or 'drought refuge' sites. Stem sections were removed from 40 multi-stemmed C. mopane trees and prepared for examination under a dissecting microscope. It was impossible to age C. mopane, owing to a hollow and/or dark heartwood. Nevertheless, the distribution of stem diameters suggested a single recruitment event. Fire scars attributed to the last recorded fire in 1948 could explain the trees' multi-stemmed growth form and indicate that most trees of VLNR were > 50 years of age. Growth rings were identified in 29 A. tortilis trees of unknown age, but were not correlated with annual rainfall records. Growth rates varied between trees; mean ring width ranged from 1.4 to 3.5 mm (overall mean 2.4 ± 0.1 mm). A technique was proposed for predicting growth rate from annual rainfall, using selected data, and several factors potentially influencing ring width in semiarid environs were identified. Permanent ground-based transects were located within riparian (n = 16) and Acacia (n = 5) woodlands to monitor elephant utilization. Elephant had not changed the population structure of the woodlands by 2000, but had reduced stem density from 215.6 stems ha -1 (1996) to 84.4 stems ha -I (2000). Acacia tortitis trees in the woodlands had branches removed, were debarked, uprooted and broken. Acacia tortitis trees in the riverine had lower levels of utilization, whilst Acacia nilotica trees were mostly debarked. The method of elephant feeding varies within and between woody species, provided it is within the mechanical constraints of a certain size or species. Elephant behaviour is concluded to depend on spatiotemporal variation of forage abundance/quality, abundance of a preferred species, and species response (coppice or mortality). Elephant can cause a change of vegetation state, and increase spatial homogeneity of a plant population. The remnant population of woodland trees should provide the potential for recolonization, in which case the system would reflect the stable limit cycle. However, if browsing inhibits seedling recruitment, the system could reflect either a multiple stable state system or an artificial equilibrium imposed on a stable limit cycle. / Thesis (M.Sc.)-University of Natal, Pietermaritzburg, 2000.
56

Browse : quantity and nutritive value of evergreen and deciduous tree species in semi-arid Southern African savannas.

Penderis, Caryn Anne. 06 November 2013 (has links)
Browse selection, intake, utilisation, palatability, quality and production are tightly linked and need to be considered together in trying to improve our understanding of browsing dynamics and the interactions between browsers and vegetation. Such an understanding is necessary in order to re-evaluate determinations of browser carrying capacities and evaluating actual and potential impacts of browsing animals on vegetation composition and diversity. Browser carrying capacity is determined by both the quantity and the nutritive value of forage. The measurement of browse quantity and nutritive value and the matching of browse supply to browser demand are central to sustainable utilisation and the monitoring of vegetation health. South African savannas are poorly studied with respect to tree canopy growth and browse production making it difficult to quantify the available browse biomass on which browsing capacity estimations are based, and consequently difficult to estimate levels of browsing that are sustainable. This study addressed these issues by investigating browse dynamics, broadly aiming to (1) explore factors affecting browse production, biomass and nutritive value; (2) develop models to assess and monitor these parameters across seasons and properties; (3) use the resultant models in improving our understanding of how to determine browser carrying capacities. More specifically, our study sought to examine the effects of plant physiognomy, forage nutritive value, canopy stratum, defoliation, temperature, rainfall and soil nutrient status on the browse production of evergreen (Carissa bispinosa, Euclea divinorum, Gymnosporia senegalensis), semi-deciduous (Spirostachys africana, Ziziphus mucronata) and deciduous (Acacia nilotica, Dichrostachys cinerea) savanna tree species from June 2003 – June 2005 in three sites along the northern Zululand coastline of KwaZulu-Natal. Available browse biomass, during the dry season, of four key savanna tree species (A. nilotica, E. divinorum, G. senegalensis, and S. africana) was estimated through the development of allometric regression equations. Non-linear regression was used to investigate the relation between the leaf dry mass (LDM) and canopy volume (CVol) of each of the four tree species. Exponential regression (y = a + brlnx) of the natural logarithm of CVol data provided the most accurate and precise description of the tree CVol – LDM relation. A study was undertaken to determine which factors may influence browse production in a southern African savanna. Regression tree models for the browse production identified that the dominant factors influencing browse production were CVol (m3), season, species and height to the lowest leaves of the tree canopy (HL) (m). The length of the growing season had a marked effect on the production potential of savanna tree species, suggesting that improved conditions for growth, i.e. greater rainfall, soil moisture content and improved soil nutrient availability result in a longer period of rapid sustained growth. Species was identified as an important contributing factor to differences in browse production rates, suggesting the need for the development of species or species group models. Mean annual browse production of evergreen trees was greater than that of deciduous and semi-deciduous trees. Mean quarterly (three monthly) browse production was highest, for all trees, during the wet season, with the greatest difference between wet and dry season production being observed in deciduous forms. Evergreen forms showed continuous growth over the whole study, with enhanced growth over the wet season. Deciduous forms, on the other hand, concentrated growth in spurts, when environmental conditions became favourable, with most production occurring during a short growing season. Browse nutritive value was found to be greatest during the wet season, when growth and photosynthesis are at their greatest. Further, browse nutritive value was greatest in deciduous species. Evergreen trees were found to have greater acid detergent fibre (ADF) concentrations than both the deciduous and semi-deciduous trees. By contrast, crude protein (CP) concentrations were greater in semi-deciduous and deciduous species than in evergreen species. The daily CP requirements for maintenance for an adult impala (45 kg) were met by all species over all three study areas and all seasons. Daily CP requirements for growth and lactation, however, were only ever met by deciduous and semi-deciduous species, though this result was not consistent over study areas and seasons. Predictive models for the production of browse on deciduous, semi-deciduous and evergreen trees in northern Zululand were developed using multivariate adaptive regression spline functions. The best predictors of growing season browse production in all three tree guilds (defined here as a group of trees having a characteristic mode of living) were primarily measurable tree dimensions, while the prevailing environmental conditions had little impact. Differences in the production, nutritive value and available browse biomass between the different tree forms and seasons have a profound effect on the determination of browser carrying capacities and need to be incorporated into any game or conservation management plan. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.
57

Effect of fire frequency on herbivore distribution and behaviour in the Kruger National Park, South Africa.

Chamane, Sindiso C. 14 November 2013 (has links)
Fire plays an important role in structuring and maintaining savanna grassland ecosystems. Although regular fires are a characteristic feature of savannas, the effects of fire frequency on these systems are less well known, particularly with respect to how frequency of fire influences large herbivore distribution and behaviour. The expectation is that large herbivores should be attracted to frequently burned sites as a consequence of changes in forage quality and quantity, and/or vegetation structure and composition. The former could be driven by alterations in soil nutrients, such as N and P. Alterations in vegetation also could be important in determining risk of predation. For example, an increase in woody vegetation could decrease predator visibility making large herbivores more vulnerable to predation. The objectives of this study were to investigate the effects of long-term alterations in fire frequency on herbivore distribution and behaviour, as well as the mechanisms (soil nutrients, vegetation structure and composition, and forage quality and quantity) potentially driving the distribution of large herbivores. To address these objectives, I conducted large herbivore surveys on a bi-weekly basis from 2009-2010 in a series of plots in the Experimental Burn Plots (EBPs) burnt at different frequencies (annual, triennial and unburnt) over the last five decades at three study sites in the Kruger National Park, South Africa. Surveys also were conducted on new plots that were established adjacent to the long-term plots. These new plots have a fire return interval of 4 years which is similar to the triennially burned plots of the EBPs. They were established in the landscape adjacent to the EBPs to assess whether the responses of herbivores to fire observed in the EBPs reflected was at landscape level. The distribution of all large herbivore species combined and of grazers (e.g. zebra) or browsers (e.g. kudu) only were not affected by fire frequency. In contrast, the abundance of mixed-feeders, such as impala, was significantly higher in the unburnt (control) and annually burned plots than the triennially burned plots. Although season did not have a significant impact on the distribution of browsers and mixed-feeders, overall more grazers were recorded across all burn treatments in the dry season compared to the wet season. Similar patterns of herbivore distribution were observed between the new plots and the triennially burned EBP plots, suggesting that responses observed to the long-term fire frequency treatments reflects herbivore responses at the landscape level. The long-term fire frequency treatments significantly affected soil nutrients (N, organic C, P, and K were significantly lower with annual burning), vegetation structure (abundance of woody plants were greater in unburned plots), and forage quantity (unburned plots had higher biomass) but not quality. More frequent fires improved visibility by reducing tree height and density and herbaceous biomass, thereby potentially reducing predation risk, when compared to less frequent burning. As a result, herbivores selected sites with more frequent fires. The behaviour of the herbivore species investigated was predominantly influenced by seasonal-induced changes to their environment rather than fire frequency. In the wet season irrespective of the burning treatment visibility was low due to high rainfall that increases plant biomass, whereas in the dry season visibility was improved because there is little to no rainfall. This potential alteration in predation risk likely resulted in herbivores being more vigilant in the wet season than the dry season. Overall, results from this study suggest that the combination of fire frequency and season drive herbivore distribution and behaviour by altering mainly the vegetation structure which can influence predation risk. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.
58

The role of fire and mechanical clearing in the management of Chromolaena odorata.

Wessels, Mathias Fittschen. January 2006 (has links)
The effects of fire and mechanical clearing were investigated for their potential in assisting with the eradication of Chromolaena odorata (previously Eupatorium odoratum). The study was divided into two focus areas, the first focused on mechanical clearing of dense stands of C. odorata on three sites and the second focused on the long term influences of a single burn on C. odorata plants in the different size categories. For mechanical clearing, two key issues were investigated; namely whether this type of clearing procedure was effective in dense C. odorata stands and whether rehabilitation was necessary in these cleared areas. The study was conducted from July 2002 to June 2004. The area was subject to a severe drought throughout the duration of the study. The severe drought had a large influence on the result in both focus areas. A bulldozer was found to be a very effective at clearing dense C. odorata stands. Results from the mechanical clearing study showed that there was still a large viable grass seed population in the areas that had been covered by a dense stand of C. odorata plants for over three years. Thus, indigenous plants were able to re-colonize the area after removal of C. odorata without human intervention, even thought the area was experiencing a severe drought. The density of C. odorata seedlings emerging in the cleared areas was far lower than expected. The C. odorata density in the permanent plots, for seedlings that germinated in the first season after clearing (SeptemberOctober 2002), was only 0.25,0.03 and 0.72 per 5 m2 in the three sites respectively by the end of the study in June 2004. For the C. odorata seedlings that germinated in the second season (September-October 2003) the density was, 0.5, 0.56 and 1.06 per 5 m2 in the three sites respectively by the end of the study in June 2004. It was suspected that the drought influenced seed germination. Unfortunately the number of C. odorata seedlings was so low, that no significant relationship could be found between grass and C. odorata seedling density. By the end of the study the grass fuel mass in all the rehabilitated sites was already over 3000 kg ha-1, even though the area was experiencing a severe drought. This grass fuel load, when burnt, will assist land managers in controlling C. odorata plants, especially seedlings. Very few other alien invasive plant species emerged in the cleared areas. At the Mhlosinga site, Senna pendula made up less than one percent of the herbaceous species composition and only a single Ricinus communis plant was recorded. No alien plant species were recorded on the other two sites. Results from the burning trials revealed that plants in all the size categories were affected by fire. Greater fuel masses and fire intensities were required to kill larger C. odorata plants relative to smaller ones. Fire was found to be very effective at eliminating small and medium size C. odorata plants. Fire applied as a once off treatment had a significant long-term effect on the C. odorata population. The following fuel loads were required to achieve 80% mortality in this 11 study: for small plants a fuel load of over 4000 kg ha-I, for medium plants a fuel load over 4200 kg ha-I and for large plants a fuel load over 4600 kg ha-I. Little difference could be detected between a head or a back burn, as both fire types had their own advantages and disadvantages. Although some of the C. odorata plants in the burnt plots had not perished by the time of the first investigation, following the burn (February 2003), by the time of the second investigation (June 2004), many of these plants had eventually succumbed. These results highlighted the fact that plants which are damaged by fire were more likely to persish during an extended droughts period, than plants which were not subjected to fire. Results from the control plots, in the burning trials, for medium and large plants showed dramatic increases in density over time. Tagged individuals from the control plots did reveal that some of the medium and large plants did die during the drought, although the amount was negligible when compared to the number of new plants growing into the new size categories. A large proportion of the small plants in the control plots also survived the drought with many of them even growing into the medium category. The difference between the control plots and the burnt plots was obvious and significant, especially once the fuel mass exceeded 3783 kg ha-I. Results from this study show that fire can be used as a very effective tool in assisting land managers to control C. odorata in open savanna bushveld. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2006.
59

Management of kikuyu (Pennisetum clandestinum) for improved dairy production.

Holliday, Jane. January 2007 (has links)
South African dairy farmers have generally used kikuyu pasture to tide them over from one ryegrass season to the next, and as a result of its resilient nature, have assumed careful management of it to be unnecessary. This has resulted in its mismanagement which is unaffordable in current times where the profitability of dairy farming is increasingly dependent on low input, pasture-based systems. Kikuyu pasture may play a larger role in supplying nutrients to dairy cattle over the summer months in future as the alternative home produced feed sources such as silage and perennial ryegrass become increasingly unaffordable. Improving animal production from kikuyu is difficult as there is little information relating kikuyu pasture management to dairy cow performance. Efficient utilization and quality of temperate pasture have been more comprehensibly researched. The relations discovered between the chemical compounds in temperate grass species have been applied to tropical pastures such as kikuyu with limited success and often confusing results. For example, crude fibre in kikuyu was found to be positively related to digestibility. In South Africa, much research has been done on the use of kikuyu in beef production systems. This information has been applied to dairy farming systems with limited success, owing to the higher metabolic demands of dairy animals. Pasture farming needs to become more precise to improve pasture quality and hence milk yields as research trials focussing on stocking rate and grazing system comparisons have yielded results that are too general with little application at the farming level. A need for integrated and flexible management of animals and pastures has been recognised. The grazing interval is a key aspect in improving pasture and animal performance and fixed rotation lengths and stocking rates have been identified as being detrimental to performance. The relation between growth stage and pasture quality has lead researchers to identify plant growth characteristics, such as pasture height and leaf stage, as signs of grazing readiness. At the four and a half leaves per tiller stage of regrowth, the chemical composition ofthe kikuyu plant is more in line with the requirements ofthe dairy cow, with the leaf to stem ratio at its highest. The primary limitation of kikuyu pasture is a lack of energy, particularly readily fermentable carbohydrate, which makes the fermentation of structural carbohydrates difficult and dry matter intakes are reduced. Other limitations to animal performance include high cell wall constituents, low calcium, magnesium and sodium content and antinutritional factors such as nitrate and insoluble oxalate. These deficiencies and antinutritional factors are in some cases unique to 5 kikuyu pasture, meaning that kikuyu specific supplementation may be the key to improving performance from dairy cattle grazing kikuyu pasture. The objectives are to evaluate current kikuyu management systems in South Africa and their impact on dairy cow performance and to evaluate the use of pasture height and burning as quality control tools. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2007.
60

Ngorongoro crater rangelands : condition, management and monitoring.

Amiyo, Amiyo T. January 2006 (has links)
The Ngorongoro Crater is a volcanic caldera located within the Ngorongoro Conservation Area in Tanzania. The Crater comprises a flat grassland plain surrounded by steep, bushy walls. It contains extremely high densities of animals and is ecologically the central feature of Ngorongoro Conservation Area. The management of the Ngorongoro Crater has changed significantly in recent times, with cattle being removed and fire excluded about 30 years ago. A detailed vegetation assessment was carried out in the Crater floor by Herlocker & Dirschl in 1972. Since then noticeable changes in vegetation structure and composition, with associated changes in wild herbivore numbers have occurred. The original vegetation survey was repeated in this study as accurately as possible using similar point-based techniques in order to quartify changes and form a baseline for management decision-making and future monitoring. In addition to repeating the vegetation survey, the standing biomass was estimated using a Pasture Disc Meter with associated calibration equations. Data were summarised using multivariate classification and ordination techniques in order to delineate six Homogenous Vegetation Units (HVUs) which can be used for management and management planning purposes, define transects and HVUs in terms of dominant species, describe the main species in relation to their occurrence in different associations and determine the fuel load of the standing crop. A key grass species technique was developed for rapid assessment of the Crater rangeland by the Ngorongoro Conservation Area staff who only need to be familiar with the dominant species. Bush surveys using a point centred quarter technique were conducted along transects in two distinct vegetation types, namely the Lerai Forest and Ngoitokitok Acacia xanthophloea forests and the lower caldera scrub vegetation. The data collected from these transacts were analysed to determine density and composition of the vegetation in the various height classes and the overall structure of the vegetation communities, A range monitoring system in conjunction with a controlled burning programme has been developed to provide an objective means of managing the- rangeland of the Ngorongoro Crater. Data revealed that changes have taken place in the vegetation, with a trend towards dominance by taller grasses and dominance by fewer species. Lack of fire has probably contributed to these changes. Reincorporating fire in the crater is recommended. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2006.

Page generated in 0.072 seconds