• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 25
  • 3
  • Tagged with
  • 77
  • 77
  • 77
  • 33
  • 29
  • 23
  • 23
  • 17
  • 13
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Exploiting soil and terrain heterogeneity : an investigation into vigour and physiology of grapevines on and off "heuweltjies‟ in the Western Cape, South Africa

Bekker, Stefanus Johannes 03 1900 (has links)
Thesis (MScAgric (Soil Science))--University of Stellenbosch, 2011. / Includes bibliography. / ENGLISH ABSTRACT: The topic of landscape heterogeneity has captured the imagination of ecologists and agriculturists alike and has been extensively investigated in this dissertation. Heuweltjies are landscape features putatively created by the termite Microhodotermes viator through their burrowing and nest-building activities. They have been closely examined in the natural veld of the Western Cape in the recent past and are the focus of many ecological studies. However, the effect of heuweltjies in cultivated landscapes (e.g. vineyards, orchards and wheat lands) remains unexplored. This study contributes significantly to our understanding of soil modifications associated with heuweltjies, as well as the physiology of vines growing on and off heuweltjies and wine made from these vines. It was hypothesized that heuweltjies occurring in cultivated areas can significantly affect crop yield and quality, thereby establishing itself as a potentially important role player in the agricultural economy of the Western Cape. This study was conducted in two climatic regions of the Western Cape, Stellenbosch (Mediterranean climate, Cabernet Sauvignon) and Robertson (semi-arid climate, Shiraz) to better understand how differences in heuweltjie characteristics correspond to differences in rainfall and temperature. In both study areas, heuweltjie soils were compared to non-heuweltjie soils with respect to physical and chemical. Grapevines associated with these heuweltjies were also compared to those growing on the adjacent, non-heuweltjie soils to determine any variation in vine vigour, physiology, phenology, berry characteristics and wine quality. Through the use of ANOVA's and Fisher's LSD posthoc tests to indicate statistical significance in soil and grapevine characteristics, it was apparent that heuweltjies induce substantial changes in soil and vine properties. Significant differences in the water content exist between the soils of the heuweltjies and non-heuweltjie areas. Heuweltjie soils exhibited higher values in comparison to the non-heuweltjie soils in the Stellenbosch study area, with opposite results in Robertson. Heuweltjie soils also displayed higher exchangeable calcium and magnesium and higher total carbon and total nitrogen values than non-heuweltjie soils in both study areas. Differences in physiology were more subtle, but vine vigour was severely altered on the heuweltjie-associated vines, exhibiting excessive vegetative growth in Stellenbosch, leading to variations in berry characteristics on and off the heuweltjies. Again, the opposite was observed for Robertson. Lower sugar and alcohol percentages and higher titratable as well as malic acid concentrations were observed in the wines emanating from the heuweltjies in Stellenbosch. Sensory analyses proved significant, as lower astringency and alcohol burn were detected in the Cabernet Sauvignon heuweltjie wines than the non-heuweltjie wines in the Stellenbosch study area. Chemical differences in the wines from the Robertson study are were insignificant. However, a significantly lower fruitiness was observed in the Shiraz heuweltjie-wines when compared to the non-heuweltjie wines. Differences in soil water content between heuweltjies and its adjacent soils was the most influential factor in this study, and affected all of the soil-grapevine interactions to a large extent. Further research need to be conducted to better understand and clarify the reasons behind these variations, as well as possible effects of global warming on heuweltjie functioning in different climatic regions of the Western Cape. / AFRIKAANSE OPSOMMING: Die onderwerp van landskap heterogeniteit het die verbeelding van beide ekoloë en landboukundiges aangegryp en is op `n omvangryke wyse ondersoek in hierdie tesis. Heuweltjies is landskap eienskappe geskep deur die uitgrawe en nesbou aktiwiteite van die termiet Microhodotermes viator. Heuweltjies in die natuurlike veld is intensief bestudeer in die onlangse verlede en is die fokus van `n verskeidenheid ekologiese studies. In bewerkte landskappe (bv. wingerde, vrugteboorde en koringlande) is daar egter `n groot tekort aan navorsing oor die invloed van heuweltjies. Hierdie studie dra grotendeels by tot ons begrip van heuweltjie-geassosieërde grondverandering, asook die fisiologie van wingerd wat groei op en af van heuweltjies, sowel as die wyn afkomstig van hierdie wingerdstokke. Hipoteties sal heuweltjies in bewerkte areas die gewasopbrengs asook –kwaliteit betekenisvol beïnvloed en word so dus gevestig as `n potensieël belangrike rolspeler in die landbou-ekonomie van die Wes-Kaap. Die studie was onderneem in twee klimaatstreke van die Wes-Kaap, Stellenbosch (Mediterreënse klimaat, Cabernet Sauvignon) en Robertson (semi-ariede klimaat, Shiraz) om vas te stel hoe verskille in heuweltjie eienskappe ooreenstem met verksille in reënval en temperatuur. In beide studie areas is heuweltjie gronde met nie-heuweltjie gronde vergelyk met betrekking tot fisiese en chemiese eienskappe. Wingerdstokke geassosieër met heuweltjies is ook vergelyk met dié wat heuweltjies omring om enige variasie in groeikrag, fisiologie, fenologie, druifkorrel eienskappe en wynkwaliteit te bepaal. Deur gebruik te maak van ANOVA's en Fisher se LSD posthoc toetse om statistiese betekenisvolheid in grond- en wingerdeienskappe aan te dui, was dit duidelik dat heuweltjies wesenlike veranderinge in dié eienskappe teweegbring. Betekenisvolle verskille heers in die waterinhoud tussen die heuweltjie en nie-heuweltjie gronde. Heuweltjie gronde het hoër waardes getoon in vergelyking met die nie-heuweltjie gronde in die Stellenbosch studie area, met teenoorgestelde bevindings in Robertson. Heuweltjie gronde het ook `n hoër konsentrasie uitruilbare kalsium en magenesium, en totale koolstof en stikstof in vergelyking met nie-heuweltjie gronde. Verskille in fisiologie was baie meer subtiel, maar wingerd groeikrag was beduidend verskillend op die heuweltjie-geasossieërde wingerdstokke, met oormatige vegetatiewe groei in Stellenbosch wat lei tot `n verskil in druifkorrel eienskappe op en af van die heuweltjie. Weereens is die teenoorgestelde waargeneem in Robertson. Laer suiker en alkohol persentasies, asook hoër titreerbare - en appelsuur konsentrasies was te bespeur in die wyne afkomstig van die heuweltjies in Stellenbosch. Sensoriese analise het betekenisvolle verskille bewys, met `n laer vrankheid en alkohol-brand sensasie waargeneem vir die Cabernet Sauvignon heuweltjie wyne as die nie-heuweltjie wyne in die Stellenbosch studie area. Chemiese verskille in die wyne vanaf Robertson was onbeduidend. Sensoriese analise het egter anders bewys, met `n betekenisvolle laer vrugtigheid te bespeur in die nie-heuweltjie wyne as die heuweltjie wyne in die Robertson studie area. Verskille in die grondwaterinhoud tussen heuweltjies en omringende gronde was die mees invloedryke faktor in hierdie studie en beïnvloed tot `n groot mate al die grond-wingerdstok interaksies. Verdere navorsing is nodig om helderheid te verskaf agter die redes vir hierdie variasies, sowel as moontlike gevolge van aardverwarming op funksionering van heuweltjies in verskillende klimaatstreke van die Wes-Kaap.
72

The potential for groundwater contamination arising from a lead/zinc mine tailings impoundment.

Vergunst, Thomas Maarten. January 2006 (has links)
The mining industry produces vast quantities of overburden and mill tailings. In many instances the disposal of these wastes on the Earth's surface have caused local, and occasionally even regional, water resources to become contaminated. Contamination typically arises from the oxidation of metal sulfide minerals contained within these wastes. Upon oxidation these minerals release sulfate, their associated metal cations and acidity into solution. This study investigated the potential for groundwater contamination arising from a Pb/Zn tailings impoundment in the North West Province of South Africa (Pering Mine). The tailings is composed predominantly of dolomite, which imparts to the material an alkaline pH and a high acid buffering capacity. Acid-base accounting (ABA) established that the capacity of the tailings to buffer acidity surpasses any acid producing potential that could arise from pyrite (FeS2), galena (PbS) and sphalerite (ZnS) oxidation. These minerals account for about 3 to 6% of the tailings by mass. Total elemental analysis (XRF) showed that the material has high total concentrations of Fe (19083 mg kg-I), Zn (5481 mg kg-I), Pb (398 mg kg-I), S (15400 mg kg-I), Al (9152 mg kg-I) and Mn (29102 mg kg-I). Only a very small fraction of this, however, was soluble under saturated conditions. An estimation of potentially available concentrations, using the DTPA extraction method, indicated that high concentrations of Zn (1056 mg kg-I), and moderate concentrations of Pb (27.3 mg kg-I) and Cu (6.01 mg kg-I) could potentially be available to cause contamination. A number of leaching experiments were undertaken to accurately quantify the release of elements from the tailings material. These experiments were aimed at determining the potential for groundwater contamination and also provided a means whereby the long-term release of contaminants could be modelled using the convection-dispersion equation for solute transport. Four leaching treatments were investigated. Two consisted of using distilled water under intermittent and continuous flow, while a third used intermittent flow of deoxygenated distilled water to assess leaching under conditions of reduced oxygen. The.mobilisation of potential contaminants under a worst case scenario was assessed by means of leaching with an acetic acid solution at pH 2.88 (after the US Environmental Protection Agency's toxicity characteristic leaching procedure). The acid buffering potential of the tailings was considerable. Even after 8 months of weekly leaching with 1 pore volume of acetic acid solution the pH of the effluent was maintained above pH 5.90. The protracted acidity caused very high concentrations of Pb, Zn, Mu, Ca, Mg, Hg and S to be released into solution. Leaching the tailings with distilled water also caused the effluent to have noticeable traces of contamination, most importantly from S, Mg, Mu and Zn. In many instances concentrations significantly exceeded guideline values for South African drinking water. Modelling solute transport with the convectiondispersion equation predicted that sol- and Mu contamination could persist for a very long period of time. (±700 years under continuous saturated leaching), while Mg and Zn concentrations would most likely exceed recommended limits for a much shorter period of time (±300 years under the same conditions). In light of the various column leaching experiments it was concluded that seepage from the Pering tailings impoundment could cause groundwater contamination. A drill-rig and coring system were used to collect both tailings and pore-water samples from eight boreholes spread out across the tailings impoundment. These investigations showed that most of the impoundment was aerobic (Eh ranged from +323 to +454 mY) and alkaline (pH 8.0 to 9.5). This chemical environment favours sulfide oxidation and as a consequence high concentrations of S have been released into the pore-water of the impoundment (S concentrations ranged from 211 to 1221 mg r l ). The acidity released as a by-product of sulfide oxidation was being buffered by dolomite dissolution, which in turn was releasing high concentrations of Mg (175 to 917 mg r l ) and Ca (62.6 to 247 mg r l ) into solution. Metal concentrations in the pore-water were low as a result of the strong metal sorbing capacity of the tailings and possible secondary precipitation. The only metal which significantly exceeded recommended limits throughout the impoundment was Hg (concentrations were between 100 and 6000 times the recommended limit of 0.001 mg r l ). Under the current geochemical conditions it is expected that Hg, S and Mg will likely pose the greatest threat to groundwater. The main concerns associated with mine tailings are that of mine drainage and dust blow off..In order to eradicate the latter problem, the tailings impoundment at Pering Mine was covered with a layer of rocks. Modelling the water balance of the impoundment using the computer model HYDRUS-2D showed that the rock cladding has potentially increased the volume of drainage water seeping from the impoundment. In light of the leaching experiments and field work, which proved that water passing through the tailings became enriched with various potentially toxic elements, it is expected that the problem of groundwater contamination around Pering Mine has been further exacerbated by the rock cladding. It was therefore concluded that there would be a strong likelihood of groundwater contamination in the vicinity of the mine. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2006.
73

Environmental contamination, prevalence and other risk factors for geohelminth infection in three informal settlements in Durban, South Africa.

Rajcoomar, Kelleen. 01 November 2013 (has links)
The effect of different types of sanitation facilities on soil contamination with geohelminth eggs and the associated risk factors were assessed in three informal settlements in Durban, South Africa. Adult members of 30 households in each settlement were interviewed to determine their knowledge, attitudes and perceptions on risk factors associated with geohelminth transmission. Two hundred soil samples were collected in each study settlement from areas considered potential sources of infection such as houses, pathways, sanitation facilities and washing areas. Of the total 600 soil samples collected, 190 (32%) were positive for geohelminth eggs with the eggs of Ascaris lumbricoides, Trichuris trichiura and Taenia spp. being recovered. Quarry Road West, where open defaecation was the most common (80%), sanitation coverage the lowest (11%) and lack of knowledge on geohelminth transmission high (97%), showed the highest levels of soil contamination (mean = 102.55eggs/100g). Stool samples were also collected from 135 children aged 1-16 years living in the three study areas. Children were found to be infected with A. lumbricoides and T. trichiura with prevalences of 33.4 and 6.5%, respectively and corresponding geometric mean intensities of 5.6 and 0.87eggs/g faeces. Some children (9.6%) also harboured dual infections. No hookworm or tapeworm infections were recorded. The results show a direct link between high levels of soil contamination and increased prevalence and infection rates. Indiscriminate defaecation by community members is recognised as the main contributing factor of geohelminth eggs in soil. The type and the number of toilets provided to a community greatly influence the success of a sanitation facility. In order to effectively control geohelminth transmission, health education and antihelminthic treatment need to accompany sanitation programmes in these areas. / Thesis (M.Sc.)-University of KwaZulu-Natal, Westville, 2011.
74

Revegetation and phytoremediation of tailings from a lead/zinc mine and land disposal of two manganese-rich wastes.

Titshall, Louis William. January 2007 (has links)
The original aims of this project were to investigate the potential for phytoremediation, with emphasis on metal accumulation, of three contrasting industrial processing wastes. These were tailings material (PT) from the decommissioned Pering Pb/Zn Mine (Reivilo, North West Province, South Africa (SA)), smelter slag (SS) from the Samancor Mnsmelter (Meyerton, Gauteng, SA) and electro-winning waste (EW) from MMC (Nelspruit, Mpumalanga, SA). It became evident, however, early in the project, that the use of metal hyperaccumulating plants was not a viable technology for these wastes. The project objectives were thus adapted to investigate alternative remedial technologies. The use of endemic and adapted grass species was investigated to revegetate the PT. In addition, chemically-enhanced phytoremediation was investigated to induce metal hyperaccumulation by grasses grown in the PT (Part 1). Revegetation of the SS and EW were not considered feasible, thus land disposal of these two Mn-rich processing wastes was investigated (Part 2). Part 1 - Revegetation of tailings from Pering Mine The PT was found to be alkaline (pH > 8.0), and consisted mainly of finely crushed dolomite. It was generally nutrient poor with high amounts of readily extractable Zn. It also had a very high P-sorption capacity. Seven grass species (Andropogon eucomus Nees; Cenchrus ciliaris L.; Cymbopogon plurinodis Stapf ex Burtt Davy; Digitaria eriantha Steud; Eragrostis superba Peyr; Eragrostis tef (Zucc.) Trotter and Fingeruthia africana Lehm) were grown in PT treated with different rates of inorganic fertiliser under glasshouse conditions. The fertiliser was applied at rates equivalent to 100 kg N, 150 kg P and 100 kg K ha-1 (full), half the full rate (half) and no fertiliser (0). Seed of C. ciliaris, C. plurinodis, D. eriantha, E. superba and F. africana were collected from Pering Mine. Seed of A. eucomus was collected from the tailings dam of an abandoned chrysotile asbestos mine. These were germinated in seedling trays and replanted into the pots. A commercial variety of E. tef was tested, but due to poor survival this species was subsequently excluded. The foliage and root biomass of the grasses and concentrations of Ca, Cu, Fe, K, Mg, Mn, Pb and Zn in the foliage were determined. The yield of all the grasses increased with an increase in fertiliser rate, with a significant species by fertiliser interaction (p = 0.002). The highest yield was measured for C ciliaris, followed by D. eriantha (4.02 and 3.43 g porI, respectively), at the full fertiliser application rate. Cymbopogon plurinodis was the third highest yielding species, while the yields of E. superba and F. africana were similar. There were positive linear correlations between foliage yield and fertiliser application rate for all grasses. The root biomass of the grasses also increased with an increase in fertiliser application rate. The interaction between grass species and fertiliser level had a non-significant (p = 0.085) effect on the yield of grasses, though there were significant individual effects of species (p < 0.001) and fertiliser (p < 0.001). Digitaria eriantha had the highest root biomass at each fertiliser application rate, followed by C plurinodis and C ciliaris. Similarly to foliage yield, there were positive linear correlations between root biomass and fertiliser application level. Positive, linear correlations were found between foliage yield and root biomass, though the strength of these varied. The weakest correlation was found for D. eriantha (R2 = 0.42) but this was attributed to a moderately high variance in foliage yield and roots becoming potbound. Generally, nutrient concentrations were within adequacy ranges reported in the literature, except for P concentrations. This was attributed to the high P-sorption capacity of the PT. Zinc concentrations were higher than the recommended range for grasses, and also increased with an increase in fertiliser application rate. This was attributed to the high available Zn concentrations in the PT and improved growth of the grasses at higher fertiliser application rates. It was recommended that C ciliaris and D. eriantha be used for revegetation due to high biomass production and that E. superba be used because of rapid growth rate and high self-propagation potential. Both C plurinodis and F. africana can also be used but are slower to establish, while A. eucomus was not a suitable species for revegetation of the PT. Inorganic fertiliser improved the growth of all these species and is recommended for the initial establishment of the grasses. An experiment was conducted to investigate the potential of inducing metal hyperaccumulation in three grass species (C ciliaris, D. eriantha and E. superba) grown in the PT. Grasses were grown in fertilised tailings for six weeks, then either ethylenediaminetetraacetic acid (EDTA) or diethylentriaminepentaacetic acid (DTPA) was added to the pots at rates of 0, 0.25, 0.5, 1 and 2 g kg-I. Grasses were allowed to grow for an additional week before harvesting. The concentrations of Cu, Pb and Zn were determined in the foliage. The interactive effect of species and chelating agent on the uptake of Cu was marginally significant (p = 0.042) and non-significant for Pb and Zn (p = 0.14 and 0.73, respectively). While the addition of the chelating agents resulted in an increase in Pb uptake by the grasses, it did not induce metal hyperaccumulation in the grasses. This was attributed to the ineffectiveness of the chelating agents in the PT in the presence of competing base cations (mainly Ca). The use of this technology was not recommended. Part 2 - Land disposal of Mn-rich processing wastes Chemical characterisation of the SS showed that it was an alkaline (pH > 9.5), Mn-rich silicate (glaucochroite), that generally·had low amounts of soluble and readily extractable metals. Acidic extractants removed high amounts of Mn, Ca and Mg, attributed to the dissolution of the silicate mineral. The EW was highly saline (saturated paste EC = 6 780 mS m,l) with a near-neutral pH. It had high amounts of soluble Mu, NHt+, S, Mg, Ca and Co. The primary minerals were magnetite, jacobsite (MnFe204) and gypsum. The effect of SS and EW on selected chemical properties of six soils was investigated by means of an incubation experiment, and their effect on the yield and element uptake by ryegrass was investigated in selected soils under glasshouse conditions. Five A-horizons (Bonheim (Ba), Hutton (Hu), lnanda (la), Shortlands (Sd) and Valsrivier (Va» and an Ehorizon (Longlands (Lo» were treated with SS at rates of 30, 60, 120,240 and 480 g kg'l and EW at rates of20, 40,80,160 and 320 g kg'l. Soils were incubated at field capacity at 24 QC and sampled periodically over 252 days. The soil pH, both immediately and over time, increased, while exchangeable acidity decreased after the addition of SS to the soils. The pH at the high rates of SS tended to be very high (about 8). The electrical conductivity (EC) of the soils also increased with an increase in SS application rates and over time. The most marked changes tended to occur in the more acidic soils (e.g. la). In the soils treated with EW, there was generally an increase in the pH of the acid soils (e.g. la) while in the more alkaline soils the pH tended to decrease (e.g. Va), immediately after waste application. There was a general decrease in pH over time, with a concurrent increase in exchangeable acidity, due to nitrification processes. The EC of all the soils increased sharply with an increase in EW application rate, attributed to the very saline nature of the EW. Water-soluble Mn concentrations in the soils treated with SS tended to be below measurable limits, except in the acid la. Iron concentrations decreased with an increase in SS application rate and over time for all soils. The water-soluble concentrations of Mn, Ca, Mg and S increased sharply with an increase in EW application rate in all soils. There was also a general increase in Mn concentrations over time. Iron concentrations tended to be low in the EW-treated soils, while Co concentrations increased as EW application rate increased. Exchangeable (EX, 0.05 M CaCh-extractable) concentrations of Fe, Co, Cu, Zn and Ni were low in the SS-treated soils. The concentrations of EX-Mn tended to increase with an increase in SS application rate in the la soil, but generally decreased in the other soils. There was also a decrease over time, attributed to the high pH leading to immobilisation of Mn. The EX-metal concentrations of the EW-treated soils were generally low, except for Mn. The concentrations of EX-Mn increased sharply as EW application rate increased. The contribution of EX-Mn was calculated to range from 209 to 3 340 mg Mn for EW rates of 20 to 320 g kg-I, respectively. In the Lo soil the expected amount of Mn was extracted at the different EW application rates. In the other soils the EX-Mn concentrations were typically higher than expected. This was attributed primarily to the dissolution ofMn from the EW due to the interaction between soil organic matter and the EW. There was generally an increase in EX-Mn concentrations over time, attributed to the decrease in pH of the soils treated with EW. The above-ground biomass production of ryegrass grown in Lo and Hu soils treated with SS increased at low application rates, but decreased again at the highest rates. The reduction in yield was attributed to an increase in soil pH leading to trace nutrient deficiencies. At the lower SS application rates, nutrient concentrations of the ryegrass tended to be within typical adequate ranges reported in the literature. Of concern was the elevated Mn concentration in the ryegrass foliage, though no toxicity symptoms were seen. This was attributed to the dissolution of the silicate mineral due to soil acidification processes and the possible ameliorating effect of high Ca and Si concentrations on Mn toxicity. The growth of ryegrass was generally poor in the Hu soil treated with EW and it did not survive beyond germination in the Lo soil treated with EW. In the Hu soil plants grew well in the 20 and 40 g kg-I EW treatments, but died at the higher rates. In both cases mortality was thought to be due to the high salinity that resulted in toxicity and osmotic stress in the newly germinated seedlings. The improved growth at the lower rates ofEW, in the Hu soil, was attributed mainly to increased N availability. The concentrations of Mn in the foliage were elevated in the soils treated with EW. A pot experiment was conducted to test the effect of applying either humic acid (HA) or compost (at a rate of 20 g kg-I) with lime (at rates of 0, 5 and 10 Mg ha-I) on the growth and nutrient uptake of ryegrass grown in the Hu soil treated with EW at rates of 0, 10, 20 and 40 g kg-I. A basal P-fertiliser was also applied in this experiment. The highest yields were measured in the treatments receiving either HA or compost at the highest application rate ofEW. The addition oflime did not improve the yield of the HA treatments, but did in the compost treatments. Generally, nutrient concentrations were adequate. The Mn concentrations were markedly lower than expected, and this was attributed to the formation of insoluble Mn-P compounds due to the addition of fertiliser. The effect of either HA or compost on Mn concentrations was not marked, but lime reduced Mn uptake. A leaching column experiment showed that, generally, the Mn was not readily leached through a simulated soil profile, though the addition of compost may enhance mobility. There was also evidence to indicate an increase in salinity and that Co concentrations of the leachate may be a problem. These data suggest that soil organic matter may be a very important factor in determining the release of Mn from the wastes, notably the EW. The land disposal of the SS and EW was not recommended at the rates investigated here, as both showed the potential for Mn accumulation in above-ground foliage, even at low application rates, while high application rates negatively impacted on plant growth. It appears that P-compounds may be beneficial in reducing Mn availability in the EW, but further testing is required. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2007.
75

Pasture responses to lime and phosphorus on acid soils in Natal.

Miles, Neil. January 1986 (has links)
No abstract available. / Thesis (Ph.D.)-University of Natal, Pietermaritzburg, 1986.
76

Alteration of the soil mantle by strip mining in the Namaqualand Strandveld

Prinsloo, H. P. 03 1900 (has links)
Thesis (MScAgric (Soil Science))--University of Stellenbosch, 2005. / The purpose of this study was to investigate and identify the occurrence of specific soil properties that may be important for vegetation functioning and the possible effect of the loss of or changes in these properties on rehabilitation success on the sandy coastal plains of the West Coast, South Africa. The study area covered approximately 9 400 ha on the Namaqualand coast in the vicinity of Brand-se-Baai (31º18'S 17º54'E), approximately 350 km north of Cape Town and 70 km north-west of the nearest town, Lutzville. A soil survey was done to reveal the presence of important pedological features. The 20 soil profiles surveyed are situated within six vegetation communities. Pedological features such as surface water repellency, permeable apedal subsurface horizons, subsurface impediments such as cemented (calcrete or dorbank) hardpans and significantly more clayey (cutanic, luvic) horizons were identified. A comparative study between rehabilitated and natural soils indicates that mining operations result in the formation of saline sand tailings, stripped of a large portion of the clay and organic matter fraction. The natural leaching of solutes, over a period of 25 months, is sufficient to lower salinity of the tailings to levels comparable to natural soils. This leaching can also results in lowering of soil fertility. Removal of the dorbank and the dense neocutanic horizon in the western side of the mine, loss of topographical features such as small dune systems and heuweltjies, destruction of natural soil profile morphology and the lowering of organic carbon and clay plus silt fraction can have detrimental effects on attempts at rehabilitation of this area to a natural condition similar to that which preceded the mining operation. Infiltration fingering and deep percolation results in the development of an aquifer below the reach of shallow-rooted desert shrubs. A method of water acquisition by vegetation through water distillation is investigated as a possible solution to the apparent discontinuum between the shallow root systems and deeper-lying aquifer. Volumetric water content measurements indicated that precipitation of 29.5 mm, over a period of 10 days, did not result in any variation at 235 mm, 360 mm and 900 mm depths. An average volumetric water content increase of 0.4 mm per night was measured in the first 23.5 cm of soil surface. This amount is a significant source of water that can explain the shallow root distribution. Water vapour movement due to temperature gradients can explain the diurnal volumetric water content fluctuations observed. Further studies are necessary to determine to what extent the depth of water infiltration influences the capacity of subsurface dew to provide plants with a nocturnal water source. Findings of this study can be summarised into two concepts namely: • Heuweltjies, small dune systems, and variation in depth of cemented hardpans are the main features that contribute to pedosphere variation and possibly to biodiversity. • Pedogenic features such as topsoil hydrophobicity, and cemented dorbank and dense more clayey (cutanic, luvic) subsurface horizons are important components of a soil water distillation process that could be a driving force behind vegetation functioning in this region. Mine activities result in the loss of certain pedogenic features and soil properties that that could be key ingredients to ecosystem functioning. The inability to recognise their significance and ignorance thereof when planning rehabilitation methods might prevent sustainable restoration of the environment.
77

The influence of soil properties on the vegetation dynamics of Hluhluwe iMfolozi Park, KwaZulu-Natal.

Harrison, Rowena Louise. January 2009 (has links)
The physical and chemical properties of soils can greatly influence the vegetation patterns in a landscape. This is especially so through the effect that particular characteristics of soils have on the water balance and nutrient cycling in savanna ecosystems. Areas in the savanna environment found in Hluhluwe iMfolozi Park have experienced a number of changes in the vegetation patterns observed. This study, therefore, looks at the effect that soil characteristics may have on the vegetation growth in this area and on the changes that have taken place over time. Fixed-point photographs, taken every four years, were used to choose fourteen sites in the Park, which showed either a ‘change’ or ‘no-change’ in vegetation from 1974 to 1997. The sites consisted of four which had ‘no-change’ in vegetation, two sites with a slight increase (5- 20%) in tree density, three sites with a greater increase in tree density (>20%), two sites with a slight decrease in tree density (5-20%), and three sites with a greater decrease in tree density (>20%). Transects were then carried out at each site, in which the soil was classified to the form and family level. Each horizon was then sampled and the field texture, structure, Munsell colour and depth of each horizon and profile recorded. The data recorded in the field were statistically analysed through a principal component analysis (PCA). The type of horizon, horizon boundary, structure type, colour group and depth for the top and subsoil were included in the models and were analysed with the number given to each site for each of the three sections of the Park, namely Hluhluwe, the Corridor and iMfolozi. The most prominent textures at all sites were sandy loam, loam, clay loam and silt loam for both the top and subsoil for all site categories. The texture classes were also compared across the Hluhluwe, Corridor and iMfolozi sections. The dominant textures in the Hluhluwe and Corridor sections are loam, clay loam and silt loam for both top and subsoils. Sites sampled in the iMfolozi section appear to have textures mainly associated with the clay loam and sandy loam classes. The structure classes of the soil including sub-angular blocky, granular and crumb which are associated with a moderate structure appear to be the most dominant type in all categories for the topsoil; single-grain and sub-angular blocky classes the main types for the subsoil. Generally the colour of the soil at all the sites sampled was yellower than 2.5YR and the values and chromas mostly fell within the range of 3-5 and 2-6, respectively. This is also shown in the PCA results obtained, which associate particular soil characteristics with the various sites sampled for the different vegetation change categories investigated. The samples collected were also analysed in the laboratory after being air-dried. The laboratory analysis included measurements of pH, exchangeable acidity, organic carbon, extractable phosphorus, particle size distribution and cation exchange capacity (CEC). The data recorded in the laboratory were also analysed by PCA. This was used to determine which soil properties are associated with the particular sites investigated. The pH of the soil, in all areas, fell within a wide range. The pH is influenced by the rainfall in the area and thus sites sampled in the Hluhluwe section are more acidic than those sampled in the Corridor and iMfolozi sections. The topsoils had a higher pH for all the samples and were in the range between 5 and 7. The exchangeable acidity measurements were low, although they were higher in the subsoil as opposed to the topsoil. The nutrient contents did not appear to vary greatly between the different sites in the Park. Generally extractable phosphorus, CEC and organic carbon were low across the Park. The particle size analysis showed that the clay percentage increases between the top and subsoil for all the sites sampled. The silt and various fractions of sand percentages vary across all sites and are lower than the clay percentage at all sites except the A horizon of the ‘slight increase’ sites. The ‘no-change’, and ‘increase’ sites have a higher percentage of clay as compared to the silt and sand fraction for both the A and B horizon. The ‘slight increase’ sites have a higher percentage of sand in the A and B horizon, the ‘slight decrease’ sites have a more equal percentage between the sand, silt and clay fractions in the A horizon and a greater percentage of clay in the B horizon. The ‘decrease’ sites have a greater percentage of clay and silt in the A and B horizon. While certain soil properties have a definite effect on the plant growth, no relationship between specific soil properties and vegetation changes was shown. However, it is likely that the soil structure and texture affect the vegetation patterns, through their influences on the water and nutrient holding capacity. With an increase in the clay percentage and more strongly structured soils, plants can access more water and nutrients and this will increase the tree density in an area. However, the recent changes in the vegetation patterns observed in the Park appear to be more associated with other environmental factors. The soil properties analysed would have generally been more constant at the sites sampled, particularly over the relatively short period of time in this study. Therefore, the changes which were recorded in the fixed-point photographs would have been enhanced by other factors experienced in the Park, including fire and the effect that grazers and browsers have on the vegetation. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2009.

Page generated in 0.057 seconds