Spelling suggestions: "subject:"thiamine deficiency"" "subject:"thiamines deficiency""
1 |
Thiamine deficientie en koolhydraat stofwisseling. Thiamine deficiency and carbohydrate metabolism, with a summary in English.Gruber, Max. January 1900 (has links)
Proefschrift - Utrecht.
|
2 |
Thiamine in a wet pet food applicationMolnar, Lydia January 1900 (has links)
Master of Science / Department of Grain Science and Industry / Greg Aldrich / Since 2010, there have been seven recalls related to thiamine deficiency in cat food products (FDA, 2017; FSA, 2017). Cats have a high requirement of thiamine (5.6 mg/kg), and deficiencies can lead to death within a month if not treated (AAFCO, 2017). A few studies have been published regarding the impact of retort processing on thiamine loss in canned pet food but no work has been reported on heat penetration in other containers (pouches and trays). Therefore, our objectives were to determine the effect of container size and type on thiamine retention during processing of cat food. Our hypothesis was that thiamine retention would be impacted by container size and type. To address this, a 2x3 factorial arrangement of treatments in which two container sizes (small: 89-104 mL vs medium: 163-207 mL) and three container types (can, pouch, and tray) were evaluated for B-vitamin losses and thermal process lethality of a wet pet food. A model wet cat loaf type formula was produced for all six experimental treatments and each was processed in duplicate over six-days. All ingredients including the vitamin premix (10x level) were thoroughly mixed, heated to 43ºC, and containers were manually filled. The filled and sealed containers were cooked in a retort (cans: SJ Reid Retort, Bellingham, WA; trays and pouches: FMC retort, Madera, CA) with thermocouples attached to the center of representative containers (n=14) in each batch. Software (Calsoft Systems, v. 5.0.5) was used to record the internal temperatures. The retort time was targeted to meet an F₀=8 at 121ºC and 21 PSI. Treatment sample were analyzed for included pH, moisture, crude protein, crude fat, ash, and B-vitamins. Results were analyzed using the GLM procedure in SAS (v. 9.4; Cary, NC) with means and interactions separated using Fisher LSD method by significant F and an α of 5%. The proximate composition and pH were similar (P > 0.10) among treatments. There was an interaction (P < 0.05) between container size and type for time to reach the F₀=8; wherein, the medium can and tray had the longest time (45.5 and 46.3 min, respectively); the small can and tray, and medium pouch were intermediate (35.4, 36.0, and 32.0 min, respectively); and the small pouch had the shortest time (36.0 min). There was no difference for either main effect of container type or size on heating lethality values (each main effect average F₀=10.3) and total lethality ranged from 12.7-16.7 min. Thiamine retention was lowest (70%) among the B-vitamins, and there was minimal loss throughout the process. The excess heating beyond F₀=8 may account for the dramatic impact on the retention of heat labile nutrients like thiamine. This may be more difficult to control in the newer packaging systems like pouches and trays.
|
3 |
Effect of phenobarbital pretreatment on the metabolism and toxicity of acetaminophen in thiamine deficient rats /Nisita Bumrungwong, Jutamaad Satayavivad, January 1983 (has links) (PDF)
Thesis (M.Sc. (Pharmacology))--Mahidol University, 1983.
|
4 |
Proteomics of the human alcoholic brain: Implications for the pathophysiology of alcohol-related brain damageAlexander-Kaufman, Kimberley Louise January 2008 (has links)
Doctor of Philosophy (PhD) / Proteomics is rapidly achieving recognition as a complimentary and perhaps superior approach to examine global changes in protein abundance in complex biological systems and the value of these techniques in neuropsychiatry is beginning to be acknowledged. Characterizing the brain’s regional proteomes provides a foundation for the detection of proteins that may be involved in disease-related processes. Firstly, optimal conditions were achieved for the application of two dimensional-gel electrophoresis (2D-GE)-based proteomics with postmortem human brain tissue. These optimized techniques were then applied to soluble fractions of adjacent grey and white matter of a single cytoarchitecturally defined area (Brodmann area 9; BA9) and of two adjacent regions of frontal white matter (BA9 and CC body) from healthy individuals. These normative proteomic comparisons highlighted the importance of correct tissue sampling, i.e. proper separation of regional white matter, as heterogeneity in the respective proteomes was demonstrated. Furthermore, they stressed the necessity for future molecular brain mapping studies. The main focus of this thesis however, was to examine the proteomes of brain regions specifically vulnerable to alcohol-induced damage underlying cognitive dysfunction. Alcoholic patients commonly experience mild to severe cognitive decline. It is postulated that cognitive dysfunction is caused by an alcohol-induced region selective brain damage, particularly to the prefrontal cortex. The cerebellum is increasingly recognized for its role in various aspects of cognition and alcohol–induced damage to the cerebellar vermis could indirectly affect neurocognitive functions attributed to the frontal lobe. We used a 2D-GE-based proteomics approach to compare protein abundance profiles of BA9 grey and white matter and the cerebellar vermis from human alcoholics (neurologically uncomplicated and alcoholics complicated with liver cirrhosis) and healthy control brains. Among the protein level changes observed are disturbances in the levels of a number of thiamine-dependent enzymes. A derangement in energy metabolism perhaps related to thiamine deficiency seems to be important in all regions analysed, even where there are no clinical or pathological findings of Wernicke-Korsakoff Syndrome. Evidence of oxidative changes was also seen in all regions and effects of liver dysfunction in the vermis found. However, overall, these results highlight the complexity of this disease process in that a number of different proteins from different cellular pathways appear to be affected. By identifying changes in protein abundance levels in the prefrontal grey and white matter and the cerebellar vermis, hypotheses may draw upon more mechanistic explanations as to how chronic ethanol consumption causes the structural and functional alterations associated with alcohol-related brain damage. Furthermore, by comparing these results, we may be able to isolate disturbances in molecular pathways specific to the brain damage caused by alcohol, severe liver dysfunction and thiamine deficiency.
|
5 |
Region-selective effects of thiamine deficiency on cerebral metabolism in pyrithiamine-treated ratsNavarro, Darren. January 2008 (has links)
Pyrithiamine-induced thiamine deficiency in rats is a well-established animal model of Wernicke's Encephalopathy (WE). This thesis project, submitted as four articles, presents an examination of metabolic events that contribute to the selective neuronal lesions observed in the medial thalamus (MT) of thiamine-deficient (TD) rat. In addition, the phenomenon of glucose-precipitated worsening of neurological status in WE patients (Wallis et al., 1978; Watson et al., 1981) is explored. / Lactate accumulation is known to occur selectively in regions of the TD brain, which ultimately express neuronal cell death (McCandless, 1982; Munujos et al., 1996). In Article 1, the metabolic origin and cellular localization of region-selective lactate accumulation in the MT of TD rats was studied using combined 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. Parallel studies were performed to examine the effects of glucose loading on regional brain lactate synthesis in TD animals. Thiamine deficiency caused focal increases in the de novo synthesis of lactate via elevated glycolytic flux in the MT, while contribution via pyruvate recycling and the periphery remained nominal. Lactate levels remained unaltered in the frontal cortex (FC), a brain region that is spared in thiamine deficiency. Administration of a glucose load intensified the selective increases in lactate de novo synthesis and accumulation in the MT of TD rats, positing a role for lactic acidosis in the glucose-precipitated worsening of neurological status in TD patients. Accordingly, Article 2 addresses the effect of glucose loading on local cerebral pH in the vulnerable MT, compared to the FC, of TD rats. Administration of a glucose load resulted in detrimental decreases in regional pH selectively in the MT, implying that alterations of brain pH contribute to the pathogenesis of thalamic neuronal damage and consequent cerebral dysfunction in WE. / Region-specific alterations in the steady state levels of cerebral amino acid neurotransmitters have been well-documented in experimental animal models of thiamine deficiency (Butterworth et al., 1979; Butterworth & Heroux, 1989; Gaitonde et al., 1975; Plaitakis et al., 1979); however, the dynamics of these changes have never been systematically explored. In Article 3, we examined the metabolic fluxes through thiamine-dependent pyruvate dehydrogenase (PDH) and alpha-ketoglutarate dehydrogenase (alpha-KGDH) using multinuclear NMR spectroscopy. Furthermore the cellular localization of the metabolic changes in relation to regional vulnerability to thiamine deficiency was addressed. Our studies clearly demonstrate that early decreases m metabolic flux through alpha-KGDH result in commensurate declines in aspartate concentrations in the MT of TD rats. Impairments to PDH flux manifest secondarily to the metabolic block at alpha-KGDH, likely due to depleted oxaloacetate pools. As a result of impaired pyruvate oxidation, declines in the de novo synthesis of glutamate and GABA ensue. The present findings also suggest that inhibition of flux through alpha-KGDH in TD brain occurs primarily in the neurons, while astrocytes possess compensatory mechanisms, i.e. the anaplerotic pathway, to replenish oxaloacetate concentrations via metabolic pathways that do not involve thiamine-dependent enzymes. / In Article 4, we investigated the regional effects of thiamine deficiency on the activity of thiamine-dependent branched-chain alpha-ketoacid dehydrogenase (BCKDH) and the resultant effects on regional cerebral branched-chain amino acid (BCAA) oxidation. Thiamine deficiency resulted in significant impairments in BCKDH activity; while parallel studies on enzyme distribution confirmed a lower oxidative capacity for BCAAs in the MT compared with the Fe. / The data presented in these four articles confirm and extend findings for the region-selective impairments in thiamine-dependent metabolic processes as the foundation of vulnerability of the MT to thiamine deficiency. In addition, glucose loading of TD rats exacerbates both lactic acidosis and impaired pyruvate oxidation in this vulnerable brain region, positing a role for these processes in the glucose-precipitated worsening of neurological status in TD patients. Impaired oxidative metabolism of glucose and BCAAs in the MT leads to the accumulation of potentially harmful metabolic intermediates, contributing to the mitochondrial dysfunction, cellular energy failure and ultimately neuronal cell death observed in thiamine deficiency.
|
6 |
Proteomics of the human alcoholic brain: Implications for the pathophysiology of alcohol-related brain damageAlexander-Kaufman, Kimberley Louise January 2008 (has links)
Doctor of Philosophy (PhD) / Proteomics is rapidly achieving recognition as a complimentary and perhaps superior approach to examine global changes in protein abundance in complex biological systems and the value of these techniques in neuropsychiatry is beginning to be acknowledged. Characterizing the brain’s regional proteomes provides a foundation for the detection of proteins that may be involved in disease-related processes. Firstly, optimal conditions were achieved for the application of two dimensional-gel electrophoresis (2D-GE)-based proteomics with postmortem human brain tissue. These optimized techniques were then applied to soluble fractions of adjacent grey and white matter of a single cytoarchitecturally defined area (Brodmann area 9; BA9) and of two adjacent regions of frontal white matter (BA9 and CC body) from healthy individuals. These normative proteomic comparisons highlighted the importance of correct tissue sampling, i.e. proper separation of regional white matter, as heterogeneity in the respective proteomes was demonstrated. Furthermore, they stressed the necessity for future molecular brain mapping studies. The main focus of this thesis however, was to examine the proteomes of brain regions specifically vulnerable to alcohol-induced damage underlying cognitive dysfunction. Alcoholic patients commonly experience mild to severe cognitive decline. It is postulated that cognitive dysfunction is caused by an alcohol-induced region selective brain damage, particularly to the prefrontal cortex. The cerebellum is increasingly recognized for its role in various aspects of cognition and alcohol–induced damage to the cerebellar vermis could indirectly affect neurocognitive functions attributed to the frontal lobe. We used a 2D-GE-based proteomics approach to compare protein abundance profiles of BA9 grey and white matter and the cerebellar vermis from human alcoholics (neurologically uncomplicated and alcoholics complicated with liver cirrhosis) and healthy control brains. Among the protein level changes observed are disturbances in the levels of a number of thiamine-dependent enzymes. A derangement in energy metabolism perhaps related to thiamine deficiency seems to be important in all regions analysed, even where there are no clinical or pathological findings of Wernicke-Korsakoff Syndrome. Evidence of oxidative changes was also seen in all regions and effects of liver dysfunction in the vermis found. However, overall, these results highlight the complexity of this disease process in that a number of different proteins from different cellular pathways appear to be affected. By identifying changes in protein abundance levels in the prefrontal grey and white matter and the cerebellar vermis, hypotheses may draw upon more mechanistic explanations as to how chronic ethanol consumption causes the structural and functional alterations associated with alcohol-related brain damage. Furthermore, by comparing these results, we may be able to isolate disturbances in molecular pathways specific to the brain damage caused by alcohol, severe liver dysfunction and thiamine deficiency.
|
7 |
Declining populations in changing environments: adaptive responses, genetic diversity, and conservationAvril M Harder (9722096) 15 December 2020 (has links)
<p>Many salmonid populations are supported through captive breeding programs in which hatchery production supplies fish for reintroduction or supplementation efforts. In Lake Champlain, Atlantic salmon (Salmo salar) are the subject of a reintroduction effort that is complicated by the occurrence of thiamine (vitamin B1) deficiency in adult salmon returning to spawn. This deficiency results in high offspring mortality rates that must be mitigated by hatchery interventions (reviewed in Chapter 1). I used an experimental transcriptomics approach coupled with survival analyses to assess genetic variation in thiamine deficiency outcomes (i.e., survival at the family level) and identified candidate genes that may comprise a putatively adaptive response to selection imposed by thiamine deficiency (Chapter 2). Using sequence data from this study, I next compared patterns of genetic variation in the Lake Champlain population against two other populations to identify signatures of selection associated with hatchery rearing environment and differences in life history strategies (Chapter 3). Finally, I surveyed salmonid populations for density-dependent effects of adult spawning density on per capita fitness and found that in many cases, hatchery releases can contribute to decreased individual fitness. Using genotype data for returning adults in multiple populations, I also tested for reductions in effective population size (Ne) associated with hatchery supplementation and describe how increasing hatchery contribution to a population decreases Ne (Chapter 4). Together, my results demonstrate the powerful influences of hatchery supplementation on salmonid populations and suggest that specific modifications to hatchery practices can limit negative impacts of captive breeding on population genetic and demographic characteristics.</p>
|
8 |
Region-selective effects of thiamine deficiency on cerebral metabolism in pyrithiamine-treated ratsNavarro, Darren. January 2008 (has links)
No description available.
|
9 |
Metabolomics analysis in rats with thiamine deficiency identifies key metabolites in vulnerable brain regions and suggests neural stem progenitor cells play a role in ameliorating metabolic dysfunctionAzar, Ashraf 08 1900 (has links)
La documentation scientifique fait état de la présence, chez l’adulte, de cellules souches et progénitrices neurales (CSPN) endogènes dans les zones sous-ventriculaire et sous-granulaire du cerveau ainsi que dans le gyrus denté de l’hippocampe. De plus, un postulat selon lequel il serait également possible de retrouver ce type de cellules dans la moelle épinière et le néocortex des mammifères adultes a été énoncé. L’encéphalopathie de Wernicke, un trouble neurologique grave toutefois réversible qui entraîne un dysfonctionnement, voire une défaillance du cerveau, est causée principalement par une carence importante en thiamine (CT). Des observations récentes laissent envisager que les facteurs en cause dans la prolifération et la différenciation des CSPN pourraient également jouer un rôle important lors d’un épisode de CT.
L’hypothèse, selon laquelle l’identification de nouveaux métabolites entrant dans le mécanisme ou la séquence de réactions se soldant en une CT pourraient en faciliter la compréhension, a été émise au moyen d'une démarche en cours permettant d’établir le profil des modifications métaboliques qui surviennent en de telles situations. Cette approche a été utilisée pour constater les changements métaboliques survenus au niveau du foyer cérébral dans un modèle de rats déficients en thiamine (rats DT), particulièrement au niveau du thalamus et du colliculus inférieur (CI). La greffe de CSPN a quant à elle été envisagée afin d’apporter de nouvelles informations sur la participation des CSPN lors d’un épisode de CT et de déterminer les bénéfices thérapeutiques potentiels offerts par cette intervention.
Les sujets de l’étude étaient répartis en quatre groupes expérimentaux : un premier groupe constitué de rats dont la CT était induite par la pyrithiamine (rats DTiP), un deuxième groupe constitué de rats-contrôles nourris ensemble (« pair-fed control rats » ou rats PFC) ainsi que deux groupes de rats ayant subi une greffe de CSPN, soit un groupe de rats DTiP greffés et un dernier groupe constitué de rats-contrôles (rats PFC) greffés. Les échantillons de foyers cérébraux (thalamus et CI) des quatre groupes de rats ont été prélevés et soumis à des analyses métabolomiques non ciblées ainsi qu’à une analyse visuelle par microscopie à balayage électronique (SEM). Une variété de métabolites-clés a été observée chez les groupes de rats déficients en thiamine (rats DTiP) en plus de plusieurs métabolites dont la documentation ne faisait pas mention. On a notamment constaté la présence d’acides biliaires, d’acide cynurénique et d’acide 1,9— diméthylurique dans le thalamus, alors que la présence de taurine et de carnosine a été observée dans le colliculus inférieur.
L’étude a de plus démontré une possible implication des CSPN endogènes dans les foyers cérébraux du thalamus et du colliculus inférieur en identifiant les métabolites-clés ciblant les CSPN. Enfin, les analyses par SEM ont montré une amélioration notable des tissus à la suite de la greffe de CSPN. Ces constatations suggèrent que l’utilisation de CSPN pourrait s’avérer une avenue thérapeutique intéressante pour soulager la dégénérescence symptomatique liée à une grave carence en thiamine chez l’humain. / Endogenous neural-stem progenitor cells (NSPC) have been documented to be found in the subventricular and subgranular zones, the dentate gyrus, and suggestions of the possibility of these cells being found in the spinal cord and neocortex in adult mammalian brain have been postulated. Thiamine deficiency (TD) is the major cause of Wernicke's Encephalopathy, a reversible neurological disorder that results in cerebral dysfunction and impairment. Recent evidence suggests factors involved in neural NSPC proliferation and differentiation are involved during TD.
By means of a current approach for profiling metabolic changes occurring in focal areas of the TD rat brain, specifically the thalamus and the inferior colliculus (IC), it was hypothesized that new metabolites that might offer a better understanding into the sequel and/or mechanism of TD could be identified. It was also considered that the use of NSPC transplantation could offer new information into the involvement of NSPC and potential therapeutic benefit in TD.
Non-targeted metabolomics analysis, fluorescences microscopy, and scanning election microscopy (SEM) analysis visualization was performed on samples of the focal areas (thalamus and IC) of pyrithiamine induced TD rats (PTD), pair-fed controls (PFC) rats, and NSPC transplanted TD and PFC rats. Various key metabolites were identified in rats with TD, including previous undocumented metabolites such as bile acids, kynurenic acid, and 1,9-dimethyluric acid in the thalamus and taurine and carnosine in the IC. The study also demonstrated a possible involvement of endogenous NSPC in focal areas of the thalamus and IC identifying key metabolites targeting NSPC and showed tissue amelioration (observed through SEM) following NSPC transplantation. The findings suggested that NSPC could offer a therapeutic alternative to alleviate some of symptomatic degeneration of TD.
|
10 |
Regulation of excitotoxicity in thiamine deficiency : role of glutamate transporters.Jhala, Shivraj 08 1900 (has links)
L’excitotoxicité est un mécanisme physiopathologique majeur impliqué dans la pathogenèse de la déficience en thiamine (DT). Dans les régions cérébrales vulnérables à la DT, on observe une mort cellulaire induite par excitotoxicité dont l’origine semble être la conséquence d’une perturbation du métabolisme énergétique mitochondrial, d’une dépolarisation membranaire soutenue et d’une diminution de l’absorption du glutamate par les astrocytes suite à la diminution de l’expression des transporteurs EAAT1 et EAAT2. Il est clairement établi que le glutamate joue un rôle central dans l’excitotoxicité lors de la DT. Ainsi, la mise en évidence des mécanismes impliqués dans la diminution de l’expression des transporteurs du glutamate est essentielle à la compréhension de la physiopathologie de la DT.
L’objectif de cette thèse consiste en l’étude de la régulation des transporteurs astrocytaires du glutamate et la mise au point de stratégies thérapeutiques ciblant la pathogenèse de l’excitotoxicité lors de l’encéphalopathie consécutive à la DT.
Les principaux résultats de cette thèse démontrent des perturbations des transporteurs du glutamate à la fois dans des modèles animaux de DT et dans des astrocytes en culture soumis à une DT. La DT se caractérise par la perte du variant d’épissage GLT-1b codant pour un transporteur du glutamate dans le thalamus et le colliculus inférieur, les régions cérébrales affectées lors d’une DT, en l’absence de modification des niveaux d’ARNm. Ces résultats suggèrent une régulation post-transcriptionnelle de l’expression des transporteurs du glutamate en condition de DT.
Les études basées sur l’utilisation d’inhibiteurs spécifiques des facteurs de transcription NFkB et de l’enzyme nucléaire poly(ADP)ribose polymérase-1 (PARP-1) démontrent que la régulation de l’expression du transporteur GLT-1 est sous le contrôle de voies de signalisation NFkB dépendantes de PARP-1. Cette étude démontre une augmentation de l’activation de PARP-1 et de NFkB dans les régions vulnérables chez le rat soumis à une DT et en culture d’astrocytes DT. L’inhibition pharmacologique du facteur de transcription NFkB par le PDTC induit une augmentation des niveaux d’expression de GLT-1, tandis que l’inhibition de PARP-1 par le DPQ conduit à l’inhibition de l’hyperactivation de NFkB observée lors de DT. L’ensemble de ces résultats met en évidence un nouveau mécanisme de régulation des transporteurs du glutamate par l’activation de PARP-1.
L’accumulation de lactate est une caractéristique de la DT. Un traitement avec le milieu de culture d’astrocytes en condition de DT sur des cultures d’astrocytes naïfs induit une diminution de l’expression de GLT-1 ainsi qu’une inhibition de la capacité d’absorption du glutamate par les astrocytes naïfs. En revanche, l’administration de lactate exogène ne modifie pas le niveau d’expression protéique de GLT-1. Ainsi, des facteurs solubles autres que le lactate sont sécrétés par des astrocytes en condition de perturbation métabolique et peuvent potentiellement réguler l’activité des transporteurs du glutamate et contribuer à la pathogenèse du syncytium astroglial.
En outre, la ceftriaxone, un antibiotique de la famille des β-lactamines, augmente de façon différentielle l’expression du variant-d’épissage GLT-1 dans le colliculus inférieur chez le rat DT et en culture d’astrocytes DT. Ces résultats suggèrent que la ceftriaxone peut constituer une avenue thérapeutique dans la régulation de l’activité des transporteurs du glutamate lors de DT.
Pour conclure, la mort cellulaire d’origine excitotoxique lors de DT survient en conséquence d’une dysfonction mitochondriale associée à une perturbation du métabolisme énergétique cérébral. La modification de l’expression des transporteurs du gluatamate est sous le contrôle des voies de signalisation NFkB dépendantes du facteur PARP-1. De plus, l’inhibition métabolique et l’augmentation des sécrétions de lactate observées lors de DT peuvent également constituer un autre mécanisme physiopathologique expliquant la diminution d’expression des transporteurs de glutamate. Enfin, la ceftriaxone pourrait représenter une stratégie thérapeutique potentielle dans le traitement de la régulation de l’expression des transporteurs du glutamate et de la perte neuronale associés à l’excitotoxicité observée lors de DT. / Excitotoxicity has been implicated as a major pathophysiological mechanism in the pathogenesis of thiamine deficiency (TD). Excitotoxic-mediated cell death is localized in areas of focal vulnerability in TD and may occur as a consequence of impairment in mitochondrial energy metabolism, sustained cell membrane depolarization and decreased uptake of glutamate by astrocytes due to the loss of excitatory amino acid transporters, (EAAT1 and EAAT2). Over the years, a number of studies have identified glutamate as being a major contributor to excitotoxicity in the pathophysiology of TD. Thus, downregulation of astrocytic glutamate transporters resulting in excitotoxicity is a key feature of TD and understanding the regulation of these transporters is essential to understanding the pathophysiology of the disorder.
The objective of the present thesis project was to examine the underlying basis of astrocytic glutamate transporter regulation during TD encephalopathy.
Major findings of the studies presented in this thesis project provide evidence for glutamate transporter abnormalities in TD animal models and astrocyte cultures exposed to TD. TD results in the loss of the glutamate transporter splice variant-1b (GLT-1b) in vulnerable areas of brain, i.e. thalamus and inferior colliculus, with no significant alteration in the mRNA levels of the transporters, suggesting that glutamate transporter regulation under conditions of TD is a posttranscriptional event.
Studies using a specific inhibitor of the transcription factor, Nuclear factor-kappa B (NF-κB) and a nuclear enzyme poly (ADP)ribose polymerase-1 (PARP-1) provided evidence for the regulation of GLT-1 by PARP-1 dependent NF-κB signalling pathways. The major findings of this study suggested an increase in the activation of PARP-1 and NF-κB molecule in the vulnerable areas of TD rat brain and TD astrocyte cultures. Pharmacological inhibition of NF-κB showed an increase in the levels of GLT-1, while inhibition of PARP-1 using a specific PARP-1 inhibitor, DPQ inhibited the increased activation of NF-κB that was observed during TD. Overall results of this finding provided evidence for a mechanism involving PARP-1 activation in the regulation of glutamate transporters.
Given the increased lactate accumulation as a classical feature of TD, we studied the effect of soluble factors produced by astrocytes on glutamate transporter function. Treatment of naïve astrocyte cultures with TD conditioned media resulted in decreased levels of GLT-1 and inhibition of glutamate uptake capacity concomitant with a loss of mitochondrial membrane potential. Administration of exogenous lactic acid produced a similar reduction in glutamate uptake to that resulting from conditioned media. However, lactic acid treatment did not result in a change in GLT-1 protein levels. In addition, the pro-inflammatory cytokine TNF-α was shown to be increased in astrocytes treated with TD along with elevated levels of the phospho-IκB fragment, indicative of increased activation of NFκB. Inhibition of NFκB led to an amelioration of the decrease in GLT-1 that occurs in TD, along with recovery of glutamate uptake. Thus, soluble factors released from astrocytes under conditions of metabolic impairment such as lactate and TNF-α impairment appear to exert a regulatory influence on glutamate transporter function.
Ceftriaxone, a β-lactam antibiotic, has the ability to differentially stimulate GLT-1b (splice-variant) expression in the inferior colliculus in TD rats and under in vitro conditions with TD astrocyte cultures. Thus, ceftriaxone may be a potential therapeutic strategy in the regulation of glutamate transporter function during TD.
In summary, excitotoxic cell death in TD occurs as a consequence of mitochondrial dysfunction associated with cerebral energy impairment and abnormal glutamate transporter status. A major underlying mechanism for glutamate transporter abnormalities is mediated by PARP-1 dependent NF-κB signaling pathways. In addition, metabolic inhibition with substantial production of lactate and TNF-α may be perhaps another mechanism responsible for glutamate transporter downregulation in TD.
|
Page generated in 0.0874 seconds