• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies on Thin Film Characteristics of Elastohydrodynamic Lubrication Using Laser Measurement Method

Huang, Bi-Wei 31 July 2003 (has links)
Abstract With the advent of new technology, various machine structures and elements appear delicate and diminutive so that the nanotribological studies are needed in the modern mechanical technological development. Thin film lubrication will be indispensable as the basis of key-technology in high-technological devices and ultra-precision machines. Therefore, the research of thin film lubrication in the nanometer order is very important. In this research uses a self-development optical elastohydrodynamic lubrication (EHL) tester to simulate the oil film characteristics in the contact region between steel ball and sapphire under the pure rolling condition. First, the variation of oil film thickness on the contact region is observed by using the optical interference principle. An inverse approach of EHL is employed to investigate the pressure distribution on the contact region of lubricant. Final, the oil thickness and pressure distribution are substituted into Reynolds equation to predict the pressure-viscosity index of lubricant. Results show that the oil film thickness increases with increasing rolling speed, and curvature radius of steel ball, but decreases with increasing load. Moreover, when the oil thickness of ester lubricant is less than 17nm, the film thickness is obviously deviated that predicted by the classical EHL theory, and the pressure-viscosity index increases from 0.8195 to 0.9093. This result indicates that the ratio of the adsorbent layer to the oil film increases and causes the increase of the lubricant viscosity.
2

Tribologické charakteristiky chytrých kapalin / Tribological characteristics of smart fluids

Michalec, Michal January 2019 (has links)
The master's thesis deals with experimental study of tribological characteristics of smart fluids. Smart fluids are substances in liquid state reacting to the presence of magnetic or electric field by change in rheological properties. For possible application in devices using conventional lubricants is necessary to choose suitable smart fluid and study the influence of excitation on formation of lubricating layer, friction and wear. Comprehensive description of excitation influence is executed using three experimental devices and theoretical model for measurements parameters specification. Assessed are lubricant film thickness, friction coefficient and wear under smart fluid activation in non-conformal contact. Results show significant observable influence of smart fluids excitation on all assessed aspects. Understanding the mechanisms of smart fluids excitation can be a key step in development of intelligent devices with active external control of lubricant behaviour and character, that could lead to maintenance cost reduction and effectivity improvement.
3

Parametry mazací vrstvy a třecích povrchů v kontaktu pracujícím v režimu superlubricity / Parameters of lubricating films and rubbing surfaces in contacts operated in superlubricity regime

Poláček, Tomáš January 2021 (has links)
The work investigates the reduction of friction between non-conformal macro contacts with partial slip. The measurement of the coefficient of friction, with the magnitude of the superlubricity, is extended by the influence of relative slip, direct observation of the contact area and the measurement of the thickness of the lubricating film. It also includes a comparison of changes in topography by friction. The experiments were mainly performed on a ball-on-disk tribometer with measuring the film thickness by colorimetic interferometry. The surface roughness changes were investigated using an optical profilometer. The effect of mean velocity, slide-to-roll radio and topography were observed for selected combinations, one of which did not allow the measurement of film thickness and one did not achieve the expected reduction in friction. For the other combinations, it was possible to observe a reduction of the coefficient of friction to 0,003 or less. The influences affecting the friction between selected materials have been investigated considerably. Thus, a foundation is laid for the research of superlubricity between contacts with partial rolling. The thesis could contribute to the reduction of friction losses, earlier(quicker/faster?) and more common use of some lubricants and materials in mechanical engineering.
4

Jet and coat of adaptive sustainable thin films

Singhal, Shrawan 13 November 2013 (has links)
Deposition of nanoscale thickness films is ubiquitous in micro- and nano-scale device manufacturing. Current techniques such as spin-coating and chemical vapor deposition are designed to create only uniform thin films, and can be wasteful in material consumption. They lack the ability to adaptively prescribe desired film thickness profiles. This dissertation presents a novel inkjet-based zero-waste polymer deposition process referred to as Jet and Coat of Adaptive Sustainable Thin Films or J-CAST. The core of this process is built on an experimentally validated multi-scale fluid evolution model, based on extensions of lubrication theory. This model involves a nano-scale fluid film sandwiched between two flat plates: a compliant superstrate and a rigid substrate, with spatial topography on both surfaces. Accounting for the flexural elasticity of the compliant superstrate, and describing the temporal evolution of the fluid film in the presence of different boundary conditions reveals that instead of seeking process equilibrium, non-equilibrium transients should be exploited to guide film deposition. This forms the first core concept behind the process. This concept also enables robust full-wafer processes for creation of uniform films as well as nanoscale films with prescribed variation of thickness at mm-scale spatial wavelengths. The use of inkjets enables zero-waste adaptive material deposition with the preferred drop volumes and locations obtained from an inverse optimization formulation. This forms the second core concept behind the process. The optimization is based on the prescribed film thickness profile and typically involves >100,000 integer parameters. Using simplifying approximations for the same, three specific applications have been discussed - gradient surfaces in combinatorial materials science and research, elliptical profiles with ~10km radius of curvature for X-ray nanoscopy applications and polishing of starting wafer surfaces for mitigation of existing nanotopography. In addition, the potential of extending the demonstrated process to high throughput roll-roll systems has also been mentioned by modifying the model to incorporate the compliance of the substrate along with that of the superstrate. / text

Page generated in 0.1058 seconds