• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 105
  • 18
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 155
  • 155
  • 155
  • 47
  • 47
  • 41
  • 31
  • 27
  • 23
  • 22
  • 17
  • 16
  • 16
  • 16
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Advanced metallization and applications to large area active matrix arrays and polysilicon thin film transistors /

Howell, Robert S., January 2000 (has links)
Thesis (Ph. D.)--Lehigh University, 2000. / Includes vita. Includes bibliographical references (leaves 162-174).
52

A study on novel organic semiconductor devices light-emitting diode and thin-film transistor /

Cheng, Kam-ho. January 2009 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2009. / Includes bibliographical references. Also available in print.
53

Nanoscale organic and polymeric field-effect transistors and their applications as chemical sensors

Wang, Liang 28 August 2008 (has links)
Not available / text
54

Developing non-invasive processing methodologies and understanding the materials properties of solution-processable organic semiconductors for organic electronics

Dickey, Kimberly Christine 28 August 2008 (has links)
Not available / text
55

Developing non-invasive processing methodologies and understanding the materials properties of solution-processable organic semiconductors for organic electronics

Dickey, Kimberly Christine, 1977- 23 August 2011 (has links)
Not available / text
56

Formation of composite organic thin film transistors with one-dimensional nanomaterials

Hsieh, Chien-Wen January 2011 (has links)
No description available.
57

Numerical Modeling of Flexible ZnO Thin-Film Transistors Using COMSOL Multiphysics

Nan, Chunyan 22 July 2013 (has links)
Increasing attention has been directed towards the development of optically transparent and mechanically flexible thin film transistors (TFTs) and associated circuits based on the transition metal oxides. These flexible see-through structures offer reduced weight, potential low-cost fabrication, and high performance compared to commonly used hydrogenated amorphous silicon (a-Si:H) in applications for large-area electronics and displays. As these emerging technologies evolve towards commercialization, a thorough investigation of the impacts of the thermo-mechanical stress and strain and their effects on the electrical and mechanical stability of the flexible microelectronic devices have become increasingly necessary. However, not much progress has been reported in this area, and the numerical modeling of the flexible transistors with the Finite Element Method (FEM) would provide unique insight to the design and operation of the flexible TFTs. In this thesis, numerical models of flexible TFTs are built up by COMSOL Multiphysics and compared with analytical models to reach the best agreement between the experimental measurements and the numerical analyses. These simulations provide additional insight into the local stress induced strain within the device due to both intrinsic and applied stress. It was shown that the thermal and mechanical impacts on the TFT performance can be reduced by placing the vital active layer of the flexible device near the neutral mechanical plane or by proper designing the device structure and processing conditions based on the data derived from the numerical models. The mathematical analysis and numerical simulation will be used to improve the electrical and mechanical performance and the reliability of the transistors for flexible applications.
58

Patterned single-walled carbon nanotube networks for nanoelectronic devices

Chen, Yingduo 03 September 2014 (has links)
Single-walled carbon nanotubes (SWNTs), with their superior combination of electrical and mechanical properties, have drawn attention from many researchers for potential applications in electronics. Many SWNT-based electronic device prototypes have been developed including transistors, interconnects and flexible electronics. In this thesis, a fabrication method for patterned SWNT networks and devices based on colloidal lithography is presented. Patterned SWNT networks are for the first time formed via solution deposition on a heterogeneous surface. This method demonstrates a simple and straight-forward way to fabricate SWNT networks in a controllable manner. Colloidal sphere monolayers were obtained by drop-casting from solution onto clean substrates. The colloidal monolayer was utilized as a mask for the fabrication of patterned SWNT networks. SWNT networks were shown to be patterned either by depositing SWNT solutions on top of a colloidal monolayer or by depositing a mixed SWNT-colloidal sphere aqueous suspension on the substrates. Colloidal monolayers were examined by optical microscopy and it was found that the monolayer quality can be affected by the concentration of colloids in solution. Polystyrene colloidal solution with concentration of 0.02 wt% ~ 0.04 wt % was found optimal for maximum coverage of colloidal monolayers on SiO2 substrates. After removing the colloidal spheres, the topology of the patterned SWNT networks was characterized by atomic force microscopy and scanning electron v microscopy. Two-dimensional ordered arrays of SWNT rings and SWNTs interconnecting the SWNT rings were observed in the resulting network structure. The height of the rings was about 4-10 nm and the diameter was about 400 nm. In some samples, mesh-like patterned SWNT networks are also observed. It is hypothesized that the capillary forces induced by Van der Waals interaction at liquid/air/solid interfaces play an important role during the formation of the patterned SWNT networks. Raman spectroscopy was also employed to identify the chirality and diameter of the SWNTs in the networks. Both metallic and semiconducting SWNTs were found in the networks and the diameter of the SWNTs was about 1 to 2 nm. The electrical properties of SWNT networks, including random SWNT networks, partially patterned SWNT networks and fully patterned SWNT networks were characterized by a probe station and a Keithley 4200 semiconductor measurement system. The random SWNT networks had two-terminal resistance varying between several MΩ to several hundred MΩ. Field effect behavior was observed in some devices with relatively high resistance and nonlinear I-V curves. Those devices had on/off ratio of less than 100. There was significant leakage current in the ―off‖ state likely due to metallic tube pathways in the networks. The partially patterned SWNT networks had resistance that varied from 20 KΩ to 10 MΩ, but did not display field effect behavior in our studies. The resistance of the patterned SWNT networks was about 10 MΩ - 100 MΩ. The electrical characteristics of the patterned SWNT networks as thin film transistors were investigated, and the on/off ratio of the devices varied from 3 to 105. The upper limit of mobility in the devices was about ~ 0.71 – 5 cm2/V·s. The subthreshold slope of patterned SWNT network FETs can be as low as 210 meV/dec. / Graduate / 0544
59

Water-dispersible, conductive polyaniline for organic thin-film electronics

Lee, Kwang Seok, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
60

Development and modeling of a low temperature thin-film CMOS on glass /

Manley, Robert G. January 2009 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 2009. / Typescript. Includes bibliographical references (leaves 87-90).

Page generated in 0.1297 seconds