Spelling suggestions: "subject:"thin films."" "subject:"hin films.""
371 |
Crystallization of amorphous solid filmsSafarik, Douglas Joseph 25 July 2011 (has links)
Not available / text
|
372 |
Phase separation in poly (styrene-b-ethylene oxide) thin films on different substratesTo, Chin-nang, Titan., 杜展能. January 2003 (has links)
published_or_final_version / abstract / toc / Physics / Master / Master of Philosophy
|
373 |
Synthesis and microstructure of NixAl1-x (0.5 x 1) thin filmsAnand, Thangaraj Joseph Sahaya. January 2004 (has links)
published_or_final_version / abstract / toc / Mechanical Engineering / Doctoral / Doctor of Philosophy
|
374 |
THE OPTICAL PROPERTIES OF CHROMIUM-OXIDE FILMS AND THE HIGH-TEMPERATURE STABILIZATION OF SILVER FILMS FOR PHOTOTHERMAL SOLAR ENERGY CONVERSIONHahn, Robert Edward, 1944- January 1976 (has links)
No description available.
|
375 |
Fabrication and bio-functionalization of tetrahedral amorphous carbon thin films for biosensor applicationsYu, He January 2013 (has links)
No description available.
|
376 |
Effect of crystal structure on the catalytic activity of evaporated silver filmsEctor, Donne Hartley, 1942- January 1967 (has links)
No description available.
|
377 |
Synthesis of Nanostructured Materials by Etching in Supercritical Carbon DioxideMorrish, Rachel Marie January 2009 (has links)
Supercritical CO₂ (scCO₂) is emerging as a viable and environmentally sustainable platform for nanomaterials synthesis due to its tunable solvent properties combined with low surface tension and viscosity, which allow rapid, non-destructive wetting within small features. However, to advance the utility of this fluid, a more thorough understanding of surface chemistry at high pressures is needed. In this study, the behavior of reactive solids in scCO₂ was examined by etching thin dielectric, metal, and alloy films to determine the fundamental mechanisms controlling the reactions. Models were developed to describe the etching processes and to benchmark scCO₂ with conventional methods. Dielectric SiOₓNy films were etched with an HF/pyridine complex dissolved in scCO₂. The anhydrous etching process resulted in formation of a residual (NH₄) ₂SiF₆ layer that limited transport of reactants to the film and caused a drop in reaction order. Partial removal of the salt was accomplished by sublimation under vacuum. Etching of thin CuO films with hexafluoroacetylacetone (hfacH) in scCO₂ was studied and found to occur via a 3-step Langmuir-Hinshelwood reaction sequence. The kinetic model showed that lower scCO₂ densities favored hfacH adsorption on the CuO surface and that scCO₂ solvation forces lowered the activation barrier for the rate-limiting step. Adding up to 10× the molar ratio of pure H₂O to hfacH nearly doubled the etching rate through formation of a hydrogen-bonded hfacH complex. Both bulk and thin film AgCu alloys were selectively etched in scCO₂ to generate nanoporous Ag structures. As Cu was preferentially removed through selective oxidation and chelation, the Ag atoms conglomerated into successively larger clusters similar to mechanisms reported in aqueous phase dealloying. Supercritical dealloying was observed at Cu compositions below typical parting limits, suggesting enhanced fluid transport in the evolving pores. When using in situ oxidation, the etching reaction was limited by decomposition of H₂O₂. Inverse space image analysis of samples with initial phase domain sizes between 250 - 1000 nm showed that below a threshold of approximately 500 nm, the dealloyed feature size mimicked the starting microstructure. Larger phase domains prohibited surface diffusion of Ag between phases producing a mixture of large and small Ag nanostructures.
|
378 |
Optical properties of thin film phosphorsPark, Wounjhang 08 1900 (has links)
No description available.
|
379 |
Luminescence properties of strontium sulfide thin-film phosphorsJones, Thomas C. 08 1900 (has links)
No description available.
|
380 |
Equilibrium microstructure of epitaxial thin filmsLittle, Scott Allen 08 1900 (has links)
No description available.
|
Page generated in 0.0764 seconds