Spelling suggestions: "subject:"thin wall"" "subject:"hin wall""
11 |
Process simulation and optimisation of thin wall injection moulded componentsMullath, Aravind January 2013 (has links)
Integrally moulded hinges and tension bands are important features in packaging components for plastic closures and their function is critically dependent on the flow induced micromorphology in the hinge section. Polymer characteristics and processing of the hinge also have an influence on the hinge properties obtained. This study is aimed at obtaining interrelationships between polymer characteristics, in-cavity flow, microstructure development and hinge properties, to produce hinges with enhanced functional properties. Three different virgin polypropylene (PP) grades were investigated (homopolymer PP-H, random copolymer PP-RC and impact copolymer PP-IC) and injection moulding simulation was carried out using Moldflow software. In-cavity data acquisition has been carried out for different sets of injection moulding conditions, using high performance transducers and a data acquisition system. A comparison between Moldflow simulation and practical injection moulding data suggests that, for thin wall injection moulded components the real time pressure data are in close agreement during the injection stage. During the packing stage there is some disagreement between these data, since the thickness of hinge and tension band sections are 0.4 mm and 0.5 mm respectively, suggesting that these dimensions are extending the capability of the software. An extensive study using a design of experiments (DoE) approach was carried out on both practical and predictive data. Injection velocity and melt temperature were the most influential factors on the component mechanical properties. From the optical micrographs it is observed that PP-RC has a finer micro-structure compared to PP-H and PP-IC and some micrographs confirm Moldflow simulation results in which hesitation effects are evident, as the flow converges into the thin hinge and tension band sections. PP-clay nanocomposites (PP-CN) were prepared using a twin screw compounder. Transmission electron microscopy (TEM) has shown some evidence of dispersion and exfoliation of the clay particles in the PP matrix. However, X-ray diffraction (XRD) results show a reduction in inter-layer spacing of PPCN s possibly due to clay compaction. The addition of nano-clay however has not resulted in any significant improvements in the mechanical properties of hinges and tension bands. The high degree of molecular orientation induced in the hinge and tension-band sections appears to mask any improvements attributed to the addition of nano-clay. From the reprocessed and post consumer recyclate (PCR) study conducted on hinges and tension bands, it is seen that with an increase in both the re-processing and PCR content there is a decrease in the component strength of around 14%, giving scope to potentially use PCR in future packaging applications. Investigations conducted on colour pigments (violet and green) reveal that the onset of crystallisation for green pigmented mouldings is considerably higher (16°C) than for natural and violet mouldings. Optical micrographs also reveal a finer microstructural texture for green components, indicating a high nucleating capability of the green pigment. Irrespective of the colour, both for hinges and tension bands, the yield stress values were around twice as high as the values quoted in the manufacturer s data sheet for isotropic PP, due to the high levels of molecular orientation in the hinge and tension band sections. In order to industrially validate the findings from the DoE study, commercial closures were produced in industry on a production tool then characterised. In the case of tension bands, there was a good agreement between the results obtained from lab scale and industrial study due to the relatively simple geometry. For hinges this agreement is not so clear. Finally a comparison of mechanical properties of the 3 PP grades shows that PP-H has a higher yield stress compared to PP-IC and PP-RC and yield stress is significantly higher (yield strain values are lower) than values quoted by the manufacturer. The PhD study has confirmed the process conditions that are able to optimise all the interactive effects to improve functional properties in high volume parts in the packaging industry.
|
12 |
Análise numérica de tensões induzidas pelo escoamento não isotérmico de um polímero no preenchimento de cavidades de paredes finasOliveira, Joao Antonio Pinto de January 2012 (has links)
O processo de moldagem por injeção de peças de paredes finas apresenta diferenças significativas em relação a processos convencionais de moldagem por injeção de termoplásticos. Processos de paredes finas são caracterizados pelo preenchimento de cavidades com espessuras inferiores a 1 mm utilizando velocidades de preenchimento elevadas. Estes dois fatores afetam o desenvolvimento de tensões induzidas pelo escoamento durante o preenchimento da cavidade, sendo que não foram encontrados na literatura estudos de determinação de tensões induzidas pelo escoamento em cavidades de paredes finas. Neste trabalho são apresentados resultados de determinação de tensões induzidas pelo escoamento em cavidades de paredes finas em comparação com resultados de simulação com cavidades características de processos convencionais. Para o cálculo das tensões induzidas pelo escoamento foi utilizado o modelo incompressível de Leonov. Para isso foi desenvolvida uma metodologia numérica para tratar problemas não isotérmicos utilizando o pacote CFD OpenFOAM. Foi utilizada a abordagem não acoplada, ou seja, o comportamento viscoelástico não é considerado na obtenção dos campos de velocidade, pressão e temperatura. Esta metodologia foi utilizada na simulação do preenchimento de cavidades bidimensionais. Os resultados indicaram que as tensões são influenciadas fortemente pela espessura da cavidade enquanto a velocidade de escoamento causou pequena variação das tensões induzidas pelo escoamento. Este trabalho mostrou que as tensões induzidas pelo escoamento não podem ser desconsideradas na produção de peças moldadas por injeção pelo processo de paredes finas. / Thin wall injection molding process of thermoplastics has significant differences compared to conventional injection molding process. Thin wall processes are characterized by cavities thinner than 1 mm and very high injection velocities. Although these two factors are expected to increase the flow induced stresses development during cavities filling, no previous study on this subject has been found in literature. In the present work, flow induced stresses under thin wall injection molding conditions are calculated using a viscoelastic model and compared to the results obtained under conventional injection conditions. In order to do this, a numerical methodology, based on the solver viscoelasticInterFoam, was developed in the OpenFOAM package to deal with the non-isothermal flow occurring during the mold filling stage. A non-coupled approach was used to calculate the stress field, i.e., the viscoelastic behavior was not considered in the determination of velocity, pressure and temperature fields. This methodology was used in the analysis of the filling stage of two-dimensional cavities. The results indicated that the cavity thickness has more influence on the flow induced stresses than the injection velocity. The obtained results also indicate that the flow induced stresses cannot be neglected in thin wall injection molding processes.
|
13 |
Análise numérica de tensões induzidas pelo escoamento não isotérmico de um polímero no preenchimento de cavidades de paredes finasOliveira, Joao Antonio Pinto de January 2012 (has links)
O processo de moldagem por injeção de peças de paredes finas apresenta diferenças significativas em relação a processos convencionais de moldagem por injeção de termoplásticos. Processos de paredes finas são caracterizados pelo preenchimento de cavidades com espessuras inferiores a 1 mm utilizando velocidades de preenchimento elevadas. Estes dois fatores afetam o desenvolvimento de tensões induzidas pelo escoamento durante o preenchimento da cavidade, sendo que não foram encontrados na literatura estudos de determinação de tensões induzidas pelo escoamento em cavidades de paredes finas. Neste trabalho são apresentados resultados de determinação de tensões induzidas pelo escoamento em cavidades de paredes finas em comparação com resultados de simulação com cavidades características de processos convencionais. Para o cálculo das tensões induzidas pelo escoamento foi utilizado o modelo incompressível de Leonov. Para isso foi desenvolvida uma metodologia numérica para tratar problemas não isotérmicos utilizando o pacote CFD OpenFOAM. Foi utilizada a abordagem não acoplada, ou seja, o comportamento viscoelástico não é considerado na obtenção dos campos de velocidade, pressão e temperatura. Esta metodologia foi utilizada na simulação do preenchimento de cavidades bidimensionais. Os resultados indicaram que as tensões são influenciadas fortemente pela espessura da cavidade enquanto a velocidade de escoamento causou pequena variação das tensões induzidas pelo escoamento. Este trabalho mostrou que as tensões induzidas pelo escoamento não podem ser desconsideradas na produção de peças moldadas por injeção pelo processo de paredes finas. / Thin wall injection molding process of thermoplastics has significant differences compared to conventional injection molding process. Thin wall processes are characterized by cavities thinner than 1 mm and very high injection velocities. Although these two factors are expected to increase the flow induced stresses development during cavities filling, no previous study on this subject has been found in literature. In the present work, flow induced stresses under thin wall injection molding conditions are calculated using a viscoelastic model and compared to the results obtained under conventional injection conditions. In order to do this, a numerical methodology, based on the solver viscoelasticInterFoam, was developed in the OpenFOAM package to deal with the non-isothermal flow occurring during the mold filling stage. A non-coupled approach was used to calculate the stress field, i.e., the viscoelastic behavior was not considered in the determination of velocity, pressure and temperature fields. This methodology was used in the analysis of the filling stage of two-dimensional cavities. The results indicated that the cavity thickness has more influence on the flow induced stresses than the injection velocity. The obtained results also indicate that the flow induced stresses cannot be neglected in thin wall injection molding processes.
|
14 |
Análise numérica de tensões induzidas pelo escoamento não isotérmico de um polímero no preenchimento de cavidades de paredes finasOliveira, Joao Antonio Pinto de January 2012 (has links)
O processo de moldagem por injeção de peças de paredes finas apresenta diferenças significativas em relação a processos convencionais de moldagem por injeção de termoplásticos. Processos de paredes finas são caracterizados pelo preenchimento de cavidades com espessuras inferiores a 1 mm utilizando velocidades de preenchimento elevadas. Estes dois fatores afetam o desenvolvimento de tensões induzidas pelo escoamento durante o preenchimento da cavidade, sendo que não foram encontrados na literatura estudos de determinação de tensões induzidas pelo escoamento em cavidades de paredes finas. Neste trabalho são apresentados resultados de determinação de tensões induzidas pelo escoamento em cavidades de paredes finas em comparação com resultados de simulação com cavidades características de processos convencionais. Para o cálculo das tensões induzidas pelo escoamento foi utilizado o modelo incompressível de Leonov. Para isso foi desenvolvida uma metodologia numérica para tratar problemas não isotérmicos utilizando o pacote CFD OpenFOAM. Foi utilizada a abordagem não acoplada, ou seja, o comportamento viscoelástico não é considerado na obtenção dos campos de velocidade, pressão e temperatura. Esta metodologia foi utilizada na simulação do preenchimento de cavidades bidimensionais. Os resultados indicaram que as tensões são influenciadas fortemente pela espessura da cavidade enquanto a velocidade de escoamento causou pequena variação das tensões induzidas pelo escoamento. Este trabalho mostrou que as tensões induzidas pelo escoamento não podem ser desconsideradas na produção de peças moldadas por injeção pelo processo de paredes finas. / Thin wall injection molding process of thermoplastics has significant differences compared to conventional injection molding process. Thin wall processes are characterized by cavities thinner than 1 mm and very high injection velocities. Although these two factors are expected to increase the flow induced stresses development during cavities filling, no previous study on this subject has been found in literature. In the present work, flow induced stresses under thin wall injection molding conditions are calculated using a viscoelastic model and compared to the results obtained under conventional injection conditions. In order to do this, a numerical methodology, based on the solver viscoelasticInterFoam, was developed in the OpenFOAM package to deal with the non-isothermal flow occurring during the mold filling stage. A non-coupled approach was used to calculate the stress field, i.e., the viscoelastic behavior was not considered in the determination of velocity, pressure and temperature fields. This methodology was used in the analysis of the filling stage of two-dimensional cavities. The results indicated that the cavity thickness has more influence on the flow induced stresses than the injection velocity. The obtained results also indicate that the flow induced stresses cannot be neglected in thin wall injection molding processes.
|
15 |
Carbonbeton-SchalendemonstratorMüller, Christian, Funke, Henrik, Gelbrich, Sandra, Kroll, Lothar 21 July 2022 (has links)
Ein Carbonbeton-Schalentragwerk, das im Rahmen des DFG-Schwerpunktprogramms SPP 1542 „Leicht Bauen mit Beton“ von der TU Chemnitz entwickelt wurde, wurde nach Projektabschluss erfolgreich errichtet. / A carbon reinforced concrete shell structure which wasdeveloped by Chemnitz University of Technology as part of the DFG Priority Programme SPP 1542 “Concrete ligth” was successfully erected after the project was completed.
|
16 |
Vibration Characteristics of Thin-Walled Noncircular Composite CylindersLo, Hung-Chieh 26 October 2010 (has links)
The lowest natural frequencies of thin-walled noncircular fiber-reinforced composite cylinders, specifically cylinders with elliptical cross sections, are investigated. Of interest is the variation of the lowest natural frequency, the so-called fundamental frequency, as a function of wall laminate properties, cross-sectional eccentricity and other cylinder geometric parameters. Both simple and clamped support boundary conditions are investigated. Laminate properties that are uniform with circumferential location and laminate properties that vary with circumferential location, by way of varying laminate fiber angle with circumferential location, are considered. As the radius of curvature of a noncircular cylinder varies with circumferential location, it is logical to consider the influence of circumferentially varying fiber orientation on the fundamental frequency. The analysis for predicting the fundamental frequency is based on Donnell shell theory, linear elastic properties, and the use of Hamilton's Principle in conjunction with the Rayleigh-Ritz technique. By use of a so-called shape factor, the magnitude of cylinder normal displacements are modulated to be larger in the regions of the cross section with the largest radius of curvatures and smaller in the regions with the smallest radius of curvature. The final equations for predicting the fundamental frequency are quite complex, but a series of approximations results in a hierarchy of simpler equations, the simplest being referred to as Lo's approximation. The prediction of the fundamental frequencies is spot checked by comparing the results as predicted by the various levels of approximation with predictions of a shell-based finite element model. Considering uniform laminate properties, comparisons between the developed analysis and the finite element model are good for all levels of simpler equations, and excellent in some cases. The developed analysis is subsequently used for parameter studies. It is found that compared to a circular cylinder of the same circumference and with uniform laminate properties, the fundamental frequency of an elliptical cylinder is always less. Surprisingly, based on the results obtained, it appears that for a given cylinder geometry the fundamental frequency is not particularly sensitive to wall lamination sequence, though the wave number in the circumferential direction of the mode shape associated with the fundamental frequency is sensitive to lamination sequence. Considering cylinders with circumferentially varying fiber orientation, comparisons between the developed analysis and the finite element model for most of the cases studied are good. However, the developed equations are limited since it is difficult to find a set of known functions to describe the deformation of an arbitrary lamination sequence when applying the Rayleigh-Ritz technique. In general, in can be concluded that the effect of varying fiber orientation on the fundamental frequency is much less than the influence of cylinder aspect ratio. It can also be concluded that the developed analysis would be an excellent tool for design purposes, as the calculation of the fundamental frequency is done quickly, and design trade-offs studies would be easy. / Ph. D.
|
17 |
Entwicklung einer Fertigungstechnologie für dünnwandigen StahlgussMiklin, Anton 14 July 2010 (has links) (PDF)
Im Rahmen der Dissertation wurde eine Fertigungstechnologie entwickelt, die die Überleitung des Stahlniederdruckgießverfahrens (3CAST) in die Produktion und somit die Erzeugung des dünnwandigen Stahlgusses ermöglicht.
Die konventionellen Stahlgusswerkstoffe sowie ihre Gießbarkeit und Wärmebehandlung wurden untersucht und an die Besonderheiten des neuen Verfahrens und dünnwandigen Stahlgusses angepasst. Auf der Basis von schon existierenden Gießtechnologien wurde eine Formträgertechnologie (FTTech) entwickelt, die unter Berücksichtigung ökologischer Aspekte eine hohe Gussteilqualität und Wirtschaftlichkeit des Gießverfahrens sichert.
Die gewonnen Ergebnisse wurden anhand eines Formträgerprototyps unter produktionsnahen Bedingungen erfolgreich erprobt. Somit ist eine Grundlage für den bei der Fa. Evosteel GmbH geplanten Aufbau der Fertigungstechnologie zur Serienproduktion von komplexen dünnwandigen Stahlgussteilen geschaffen.
|
18 |
Entwicklung einer Fertigungstechnologie für dünnwandigen StahlgussMiklin, Anton 18 June 2010 (has links)
Im Rahmen der Dissertation wurde eine Fertigungstechnologie entwickelt, die die Überleitung des Stahlniederdruckgießverfahrens (3CAST) in die Produktion und somit die Erzeugung des dünnwandigen Stahlgusses ermöglicht.
Die konventionellen Stahlgusswerkstoffe sowie ihre Gießbarkeit und Wärmebehandlung wurden untersucht und an die Besonderheiten des neuen Verfahrens und dünnwandigen Stahlgusses angepasst. Auf der Basis von schon existierenden Gießtechnologien wurde eine Formträgertechnologie (FTTech) entwickelt, die unter Berücksichtigung ökologischer Aspekte eine hohe Gussteilqualität und Wirtschaftlichkeit des Gießverfahrens sichert.
Die gewonnen Ergebnisse wurden anhand eines Formträgerprototyps unter produktionsnahen Bedingungen erfolgreich erprobt. Somit ist eine Grundlage für den bei der Fa. Evosteel GmbH geplanten Aufbau der Fertigungstechnologie zur Serienproduktion von komplexen dünnwandigen Stahlgussteilen geschaffen.:1 Einleitung
2 Stand der Technik „Fertigung dünnwandiges Stahlgusses“
2.1 Stahlgusswerkstoffe
2.2 Metallurgische Erzeugung
2.3 Gießtechnologie
2.3.1 Schwerkraftguss
2.3.2 Gegenschwerkraftguss
2.3.3 Druckguss
2.3.4 Schleuderguss
2.4 Formtechnologie
2.4.1 Dauerformen
2.4.2 Verlorene Formen
2.4.2.1 Tongebundene Formen
2.4.2.2 Technologie der kalthärtenden Formstoffe
2.4.2.3 Technologie der warmhärtenden Formstoffe
2.4.2.4 Feinguss
2.4.2.5 Vollformguss
2.4.2.6 Vakuumformverfahren
2.4.3 Stützschalenverfahren
2.5 Wärmebehandlung
2.6 Dünnwandiger Stahlguss
2.6.1 Erzeugung
2.6.2 Anwendungsgebiete
3 Aufgaben und Zielstellung der Arbeit
4 Werkstoffentwicklung
4.1 Werkstoffauswahl
4.2 Probenentwicklung
4.3 Untersuchung des Erstarrungs- bzw. Abkühlungsvorganges
4.3.1 Versuchsdurchführung
4.3.2 Ergebnisse der Untersuchung
4.3.3 Diskussion der Ergebnisse
4.4 Wärmebehandlung und Ermittlung mechanischer
Eigenschaften
4.4.1 Versuchsdurchführung
4.4.2 Ergebnisse der Untersuchung
4.4.3 Diskussion der Ergebnisse
5 Entwicklung der Formtechnologie
5.1 Konzepterarbeitung
5.1.1 Kernpaket
5.1.2 Formträger
5.1.3 Konturnaher Formträger
5.1.4 Formträger mit Formhinterfüllung
5.2 Vorversuch
5.2.1 Versuchsdurchführung
5.2.2 Ergebnisse der Untersuchung
5.2.3 Diskussion der Ergebnisse
5.3 Entwicklung des Formträgerprototyps
5.3.1 Konstruktion des Formträgerprototyps
5.3.2 Erprobung des Formträgerprototyps
5.3.3 Ergebnisse der Untersuchung
5.3.4 Diskussion der Ergebnisse
5.4 Formstoffentwicklung
5.4.1 Untersuchungen zur Einsetzbarkeit verschiedener
Formgrundstoffe
5.4.1.1 Untersuchte Formgrundstoffe
5.4.1.2 Eigenschaften der untersuchten Formgrundstoffe
5.4.1.3 Diskussion der Ergebnisse
5.4.1.4 Gießtechnologische Untersuchungen
5.4.1.5 Ergebnisse der gießtechnologischen Untersuchungen
5.4.1.6 Diskussion der Ergebnisse
5.4.2 Untersuchungen zur Einsetzbarkeit verschiedener
Bindersysteme
5.4.2.1 Cold-box-Verfahren
5.4.2.2 Resol-CO2-Verfahren
5.4.2.3 Beach-Box-Verfahren
5.4.2.4 Diskussion der Ergebnisse
5.5 Entwicklung des Formstoffüberzuges
5.5.1 Laboruntersuchungen
5.5.2 Gießtechnologische Untersuchungen
5.5.3 Diskussion der Ergebnisse
5.6 Entwicklung des Formhinterfüllmateriales
5.6.1 Vorversuch mit Formträgerprototyp
5.6.2 Diskussion der Ergebnisse
5.6.3 Entwicklung des Formhinterfüllmateriales
5.6.4 Diskussion der Ergebnisse
6 Wirtschaftliche Betrachtung der entwickelten Technologie
7 Beiträge zur Verbesserung der Umweltbedingungen
8 Zusammenfassung
|
19 |
PP/clay nanocomposites : compounding and thin-wall injection mouldingFu, Tingrui January 2017 (has links)
This research investigates formulation, compounding and thin-wall injection moulding of Polypropylene/clay nanocomposites (PPCNs) prepared using conventional melt-state processes. An independent study on single screw extrusion dynamics using Design of Experiments (DoE) was performed first. Then the optimum formulation of PPCNs and compounding conditions were determined using this strategy. The outcomes from the DoE study were then applied to produce PPCN compounds for the subsequent study of thin-wall injection moulding, for which a novel four-cavity injection moulding system was designed using CAD software and a new moulding tool was constructed based upon this design. Subsequently, the effects of moulding conditions, nanoclay concentration and wall thickness on the injection moulded PPCN parts were investigated. Moreover, simulation of the injection moulding process was carried out to compare the predicted performance with that obtained in practice by measurement of real-time data using an in-cavity pressure sensor. For the selected materials, the optimum formulation is 4 wt% organoclay (DK4), 4 wt% compatibiliser (Polybond 3200, PPgMA) and 1.5 wt% co-intercalant (erucamide), as the maximum interlayer spacing of clay can be achieved in the selected experimental range. Furthermore, DoE investigations determined that a screw speed of 159 rpm and a feed rate of 5.4 kg/h are the optimum compounding conditions for the twin screw extruder used to obtain the highest tensile modulus and yield strength from the PPCN compounds. The optimised formulation of PPCNs and compounding conditions were adopted to manufacture PPCN materials for the study of thin-wall injection moulding. In the selected processing window, tensile modulus and yield strength increase significantly with decreasing injection speed, due to shear-induced orientation effects, exemplified by a significantly increased frozen layer thickness observed by optical microscopy (OM) and Moldflow® simulation. Furthermore, the TEM images indicate a strong orientation of clay particles in the flow direction, so the PPCN test pieces cut parallel to the flow direction have 36.4% higher tensile modulus and 13.6 % higher yield strength than those cut perpendicular to the flow direction, demonstrating the effects of shear induced orientation on the tensile properties of thin-wall injection moulded PPCN parts. In comparison to injection speed, mould temperature has very limited effects in the selected range investigated (25-55 °C), in this study. The changes in moulding conditions show no distinctive effects on PP crystallinity and intercalation behaviour of clay. Impact toughness of thin wall injection moulded PPCN parts is not significantly affected by either the changes in moulding conditions or clay concentration (1-5 %). The SEM images show no clear difference between the fracture surfaces of PPCN samples with different clay concentrations. TEM and XRD results suggest that higher intercalation but lower exfoliation is achieved in PPCN parts with higher clay content. The composites in the thin sections (at the end of flow) have 34 % higher tensile modulus and 11 % higher yield strength than in the thicker sections, although the thin sections show reduced d001 values. This is attributed to the significantly enhanced shear-induced particle/molecular orientation and more highly oriented frozen layer, according to TEM, OM and process simulation results. In terms of the reduced d001 values in the thin sections, it is proposed that the extreme shear conditions in the thin sections stretch the PP chains in the clay galleries to a much higher level, compaction of clay stacks occurs as less interspacing is needed to accommodate the stretched chains, but rapid cooling allows no time for the chains to relax and expand the galleries back. Overall, data obtained from both actual moulding and simulation indicate that injection speed is of utmost importance to the thin-wall injection moulding process, development of microstructure, and thus the resulting properties of the moulded PPCN parts, in the selected experimental ranges of this research.
|
20 |
Development of a Lightweight Hurricane-Resistant Roof SystemAmir Sayyafi, Ehssan 30 March 2017 (has links)
Roofs are the most vulnerable part of the building envelope that often get damaged when subjected to hurricane winds. Damage to the roofs has a devastating impact on the entire structure, including interior losses and service interruptions. This study aimed at the development of a novel light-weight composite flat roof system for industrial, commercial and multi-story residential buildings to withstand Category 5 hurricane wind effects based on the Florida Building Code requirements for hurricane-prone regions, the strictest wind design code in the United States.
The proposed roof system is designed as a combination of two advanced materials: ultra-high performance concrete (UHPC), reinforced with high strength steel (HSS). The novel combination of these two materials in a specially designed cross section led to a lightweight low-profile ultra-thin-walled composite roof deck, with only 17 pounds per square foot self-weight, 4-inch overall depth and only ¾-inch thick flanges and webs, with no shear reinforcement or stirrup. Two groups of specimens, single-cell and multi-cell, were fabricated and tested in four-point flexure to determine the ultimate bending capacity and ductility of the system. Each group of specimens included two short-span (9 ft.) samples (due to the laboratory constraints) -- one specimen subjected to positive bending and the other one subjected to negative bending, representing the critical loading conditions including the effects of wind pressures. All specimens exhibited pure flexural failure in a ductile behavior and with no sign of shear failure. Finite element models of laboratory specimens were also developed and calibrated based on experimental data in order to project the performance of the system for larger and more realistic spans. The experimental work and the finite element analyses showed that the proposed roof system with its given section has adequate flexural and shear strength, and also meets serviceability requirements for a 20-foot long span. Moreover, connections for the roof system were proposed, including panel-to-panel connections and roof-to-wall connections.
In addition to safety, the other advantages of the proposed roof system in comparison to the equivalent reinforced concrete roofs include a three-fold reduction in self-weight, a three-fold reduction in overall profile height, and a five-fold reduction of steel reinforcement. Together, these advantages may lead to an increased span length beyond what is typically feasible for the conventional reinforced concrete slabs. All these features translate the proposed deck to a sustainable roof system.
|
Page generated in 0.0373 seconds