• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Solvatothermale Darstellung und Struktur von ring- und kettenförmigen Thio- und Selenidoarsenaten (III)

Vater, Viola. January 1999 (has links)
Bochum, Universiẗat, Diss., 2000. / Dateiformat: PDF.
2

Schwefelhaltige Arsenspezies in Grundwässern / Arsenic-sulfur complexes in groundwater Structure, analytical methods and remediation strategies / Strukturaufklärung, Analytik und Sanierungsstrategien

Stauder, Stefan 15 August 2007 (has links) (PDF)
Es wurde eine Arsenkontamination von Boden und Grundwasser im Bereich einer Zellstofffabrik untersucht, die auf Ablagerungen von Eisenoxidschlacken (Rückstände aus der Pyritröstung) mit hohem Gehalt an verschiedenen Spurenelementen zurückzuführen ist. Der Standort ist dadurch gekennzeichnet, dass über viele Jahre Lösungen aus der Celluloseproduktion („Sulfitablauge“) versickerten. Hierdurch gelangten größere Mengen an Sulfat und organischen Stoffen in den Untergrund. Infolgedessen weist das Grundwasser einen stark reduzierten, sulfidischen Chemismus auf. Ein Großteil der Spurenelemente wurde aus der Schlacke im Oberboden in den darunter liegenden wassergesättigten Bereich transportiert und dort in Form von sulfidischen Niederschlägen festgelegt. Eine Ausnahme bildet Arsen, das unter den spezifischen Milieubedingungen im Schadenzentrum lösliche schwefelhaltige Verbindungen bildet (max. 4 mg As/L). Diese Arsen-Schwefel-Spezies wurden erstmals mit einer neu entwickelten IC-ICP/MS- Methode in einem Grundwasser nachgewiesen. Die Grundwasser- und Bodenuntersuchungen sowie begleitende hydrogeologische Messungen ergaben, dass die Arsen-Schwefel-Spezies innerhalb einer Fließstrecke von 30-80 m im Abstrom des Schadenzentrums vollständig immobilisiert werden. Bei der Festlegung von Arsen spielt die biologische Sulfatreduktion, die durch versickerte Sulfitablauge ermöglicht wurde, eine entscheidende Rolle. Anhand dieser Erkenntnisse wurde im Jahr 2000 ein natural attenuation-Konzept zur Sicherung des Standortes ausgearbeitet. Nach Auswertung der Ergebnisse der Standortuntersuchungen aus den Jahren 1999-2005 sowie einer Literaturrecherche zur Arsen-Schwefel-Chemie wurden die Struktur und das Verhalten der unbekannten Arsen-Schwefel-Spezies sowie die Vorgänge bei der Festlegung von Arsen im Boden genauer untersucht. Das wesentlichste Ergebnis der Arbeiten ist, dass in sulfidischen Systemen, z.B. in Grundwässern unter Sulfat reduzierenden Bedingungen, Thioarsenate gebildet werden. In Lehrbüchern und Fachpublikationen aus den vergangenen Jahrzehnten wurde bislang ausschließlich die Existenz von Thioarseniten vermutet. Ursache für die Bildung von Thioarsenaten ist eine hohe Affinität zwischen Arsen und Schwefel, die eine Oxidation von As(III) durch Anlagerung eines Schwefelatoms an dessen freiem Elektronenpaar „erzwingt“. In sulfidhaltigen Lösungen wird hierzu ein Teil des As(III) zu elementarem Arsen reduziert. Das zunächst gebildete Monothioarsenat wird weiter zu den schwefelhaltigeren Thioarsenaten sulfidiert. In sulfidischen Grundwässern bestimmen deshalb die Anionen von Oxomonothioarsenat, Oxodithioarsenat, Oxotrithioarsenat und Tetrathioarsenat das Verhalten von Arsen. Wesentlich für das Verständnis der Arsen-Schwefel-Chemie ist auch die Instabilität der As-SH-Gruppen, die entsprechend dem Dissoziationsverhalten der jeweiligen Arsen-Schwefel-Spezies gebildet werden. Dies erfolgt bei pH-Werten im Bereich von ca. 7-8,5, wobei die monomeren Anionen unter Abspaltung von Schwefelwasserstoff kondensieren. Infolgedessen muss in Grundwässern auch mit polymeren Thioarsenaten gerechnet werden. In saurer Lösung zerfallen die Thioarsenate in arsenige Säure und Schwefel bzw. fallen als Arsenpentasulfid aus. Arsen wird in sulfidischen Aquiferen als Sulfid (z.B. As4S4), als Arsenpyrit (FeAsS) oder durch Einbau von Arsen als Schwefelsubstituent in das Kristallgitter von Mackinawite bzw. Pyrit (FeS, FeS2) festgelegt. Die ermittelten Prozesse können ggf. zur Sanierung bzw. Sicherung von Standorten mit arsenhaltigen Rückständen im Boden bzw. von arsenbelasteten Grundwässern eingesetzt werden. Dabei ist auch von Bedeutung, dass Thioarsenate nach derzeitigem Kenntnisstand relativ gering toxisch sind. Im Umgang mit Thioarsenaten, z.B. auch bei der Analyse von Arsen in sulfidischen Proben, ist jedoch deren Umwandlung in arsenige Säure bei einer pH-Absenkung und auch bei Sauerstoffzutritt zu berücksichtigen. Die biologische Sulfatreduktion spielt eine wesentlich größere Rolle für die Mobilität von Arsen in Grundwässern als bisher angenommen. Im Hinblick auf die weltweit große gesundheitliche Relevanz von Arsen im Trinkwasser und auf mögliche Sanierungsverfahren sollten die Umsetzungen von Arsen unter Sulfat reduzierenden Bedingungen eingehender untersucht werden. / The motivation for the thesis was a project at an industrial site conducted in 1999 to define a remediation concept for soil and groundwater contaminated with arsenic. The contamination resulted from the deposition of residuals from pyrite burning (iron oxides containing different trace elements) in the upper soil many years ago. Because of long-term pollution with process waters rich in organic substances and sulfate, the aquifer is strongly reduced (sulfidic). Most of the arsenic was transferred out of the contaminated soil into the saturated zone in a depth of 7-10 m. There it is partly immobilized as sulfide precipitations, but part of it is solved in the groundwater in form of arsenic-sulfur-complexes (up to 4 ppm). These complexes were detected for the first time in a groundwater by means of an improved IC-ICP-MS method. It was also found that approx. 80 m downstream of the contaminated spot the concentrations of arsenic in soil and groundwater were not increased. On this basis a natural attenuation concept was proposed in 2000. The data from the investigated site was evaluated and specific laboratory tests were carried out in order to identify the unknown arsenic species as well as the processes which lead to their immobilization in the aquifer. The key role of the soluble arsenic-sulfur complexes for the mobility and toxicity of arsenic in sulfate-reducing environments is commonly accepted. In the past, thioarsenites were assumed to be the existing species in sulfidic systems. In this study, however, thioarsenates were identified in solutions spiked with in arsenite and hydrogen sulfide as well as in the contaminated groundwater. The unexpected finding of an oxidation of arsenite to thioarsenates in strongly reducing systems can be explained by the high affinity between As(III) and sulfur. In sulfide containing solutions without any oxidant, arsenite therefore undergoes disproportionation to thioarsenates and elemental arsenic. This was already found out in the 19th century, but has been neglected in publications from the last decades. According to the results of this study the anions of oxomonothioarsenate, oxodithioarsenate, oxotrithioarsenate und tetrathioarsenate are the dominating arsenic species in sulfidic waters. The partitioning of the four species is governed mainly by the sulfide concentration. Beside the high affinity between arsenic and sulfur, the instability of the As-SH group is essential to understand the reactions in the arsenic-sulfur system. As soon as the arsenic-sulfur complexes form As-SH groups (according to their dissociation characteristics) they condensate in separating hydrogen sulfide. Thioarsenates form polymers in the pH range of approx. 7-8.5. Therefore beside the mentioned monomers, thioarsenate polymers can also be important in natural environments. In more acidic solutions they decay into arsenite and sulfur or precipitate as arsenic-pentasulfide. When analyzing arsenic in sulfide containing solutions, it has always to be taken into account that thioarsenates are highly sensitive to oxygen and pH. Therefore, e.g. arsenic speciation by means of HG-AAS is not suitable for sulfidic waters and can wrongly indicate a mixture of arsenite and arsenate. It has previously been supposed that the mobility as well as the toxicity of arsenic increase if the redox state decreases. For sulfidic waters the opposite is probably the case owing to the formation of thioarsenates. The toxicity of arsenite is due to the high reactivity of the As(III) towards sulfohydroxyl groups in proteins. Without a free electron pair and sulfur already incorporated, thioarsenates should be less toxic compared to arsenite. Arsenic can be mobilized out of contaminated soils in form of thioarsenates via infiltration of sulfide solutions or by input of sulfate and biodegradable organic matter. In the presence of iron, thioarsenates can be fixated in sulfidic aquifers as a minor substitute in mackinawite and biogenic pyrite or as arsenic pyrite. Bacterial sulfate reduction is a crucial factor for the mobilization and immobilization of arsenic in reduced aquifers. Considering the negative health impacts of arsenic for millions of people worldwide, as well as the implementation of the mentioned remediation strategies the arsenic-sulfur chemistry deserves closer attention.
3

Schwefelhaltige Arsenspezies in Grundwässern: Strukturaufklärung, Analytik und Sanierungsstrategien

Stauder, Stefan 13 March 2007 (has links)
Es wurde eine Arsenkontamination von Boden und Grundwasser im Bereich einer Zellstofffabrik untersucht, die auf Ablagerungen von Eisenoxidschlacken (Rückstände aus der Pyritröstung) mit hohem Gehalt an verschiedenen Spurenelementen zurückzuführen ist. Der Standort ist dadurch gekennzeichnet, dass über viele Jahre Lösungen aus der Celluloseproduktion („Sulfitablauge“) versickerten. Hierdurch gelangten größere Mengen an Sulfat und organischen Stoffen in den Untergrund. Infolgedessen weist das Grundwasser einen stark reduzierten, sulfidischen Chemismus auf. Ein Großteil der Spurenelemente wurde aus der Schlacke im Oberboden in den darunter liegenden wassergesättigten Bereich transportiert und dort in Form von sulfidischen Niederschlägen festgelegt. Eine Ausnahme bildet Arsen, das unter den spezifischen Milieubedingungen im Schadenzentrum lösliche schwefelhaltige Verbindungen bildet (max. 4 mg As/L). Diese Arsen-Schwefel-Spezies wurden erstmals mit einer neu entwickelten IC-ICP/MS- Methode in einem Grundwasser nachgewiesen. Die Grundwasser- und Bodenuntersuchungen sowie begleitende hydrogeologische Messungen ergaben, dass die Arsen-Schwefel-Spezies innerhalb einer Fließstrecke von 30-80 m im Abstrom des Schadenzentrums vollständig immobilisiert werden. Bei der Festlegung von Arsen spielt die biologische Sulfatreduktion, die durch versickerte Sulfitablauge ermöglicht wurde, eine entscheidende Rolle. Anhand dieser Erkenntnisse wurde im Jahr 2000 ein natural attenuation-Konzept zur Sicherung des Standortes ausgearbeitet. Nach Auswertung der Ergebnisse der Standortuntersuchungen aus den Jahren 1999-2005 sowie einer Literaturrecherche zur Arsen-Schwefel-Chemie wurden die Struktur und das Verhalten der unbekannten Arsen-Schwefel-Spezies sowie die Vorgänge bei der Festlegung von Arsen im Boden genauer untersucht. Das wesentlichste Ergebnis der Arbeiten ist, dass in sulfidischen Systemen, z.B. in Grundwässern unter Sulfat reduzierenden Bedingungen, Thioarsenate gebildet werden. In Lehrbüchern und Fachpublikationen aus den vergangenen Jahrzehnten wurde bislang ausschließlich die Existenz von Thioarseniten vermutet. Ursache für die Bildung von Thioarsenaten ist eine hohe Affinität zwischen Arsen und Schwefel, die eine Oxidation von As(III) durch Anlagerung eines Schwefelatoms an dessen freiem Elektronenpaar „erzwingt“. In sulfidhaltigen Lösungen wird hierzu ein Teil des As(III) zu elementarem Arsen reduziert. Das zunächst gebildete Monothioarsenat wird weiter zu den schwefelhaltigeren Thioarsenaten sulfidiert. In sulfidischen Grundwässern bestimmen deshalb die Anionen von Oxomonothioarsenat, Oxodithioarsenat, Oxotrithioarsenat und Tetrathioarsenat das Verhalten von Arsen. Wesentlich für das Verständnis der Arsen-Schwefel-Chemie ist auch die Instabilität der As-SH-Gruppen, die entsprechend dem Dissoziationsverhalten der jeweiligen Arsen-Schwefel-Spezies gebildet werden. Dies erfolgt bei pH-Werten im Bereich von ca. 7-8,5, wobei die monomeren Anionen unter Abspaltung von Schwefelwasserstoff kondensieren. Infolgedessen muss in Grundwässern auch mit polymeren Thioarsenaten gerechnet werden. In saurer Lösung zerfallen die Thioarsenate in arsenige Säure und Schwefel bzw. fallen als Arsenpentasulfid aus. Arsen wird in sulfidischen Aquiferen als Sulfid (z.B. As4S4), als Arsenpyrit (FeAsS) oder durch Einbau von Arsen als Schwefelsubstituent in das Kristallgitter von Mackinawite bzw. Pyrit (FeS, FeS2) festgelegt. Die ermittelten Prozesse können ggf. zur Sanierung bzw. Sicherung von Standorten mit arsenhaltigen Rückständen im Boden bzw. von arsenbelasteten Grundwässern eingesetzt werden. Dabei ist auch von Bedeutung, dass Thioarsenate nach derzeitigem Kenntnisstand relativ gering toxisch sind. Im Umgang mit Thioarsenaten, z.B. auch bei der Analyse von Arsen in sulfidischen Proben, ist jedoch deren Umwandlung in arsenige Säure bei einer pH-Absenkung und auch bei Sauerstoffzutritt zu berücksichtigen. Die biologische Sulfatreduktion spielt eine wesentlich größere Rolle für die Mobilität von Arsen in Grundwässern als bisher angenommen. Im Hinblick auf die weltweit große gesundheitliche Relevanz von Arsen im Trinkwasser und auf mögliche Sanierungsverfahren sollten die Umsetzungen von Arsen unter Sulfat reduzierenden Bedingungen eingehender untersucht werden. / The motivation for the thesis was a project at an industrial site conducted in 1999 to define a remediation concept for soil and groundwater contaminated with arsenic. The contamination resulted from the deposition of residuals from pyrite burning (iron oxides containing different trace elements) in the upper soil many years ago. Because of long-term pollution with process waters rich in organic substances and sulfate, the aquifer is strongly reduced (sulfidic). Most of the arsenic was transferred out of the contaminated soil into the saturated zone in a depth of 7-10 m. There it is partly immobilized as sulfide precipitations, but part of it is solved in the groundwater in form of arsenic-sulfur-complexes (up to 4 ppm). These complexes were detected for the first time in a groundwater by means of an improved IC-ICP-MS method. It was also found that approx. 80 m downstream of the contaminated spot the concentrations of arsenic in soil and groundwater were not increased. On this basis a natural attenuation concept was proposed in 2000. The data from the investigated site was evaluated and specific laboratory tests were carried out in order to identify the unknown arsenic species as well as the processes which lead to their immobilization in the aquifer. The key role of the soluble arsenic-sulfur complexes for the mobility and toxicity of arsenic in sulfate-reducing environments is commonly accepted. In the past, thioarsenites were assumed to be the existing species in sulfidic systems. In this study, however, thioarsenates were identified in solutions spiked with in arsenite and hydrogen sulfide as well as in the contaminated groundwater. The unexpected finding of an oxidation of arsenite to thioarsenates in strongly reducing systems can be explained by the high affinity between As(III) and sulfur. In sulfide containing solutions without any oxidant, arsenite therefore undergoes disproportionation to thioarsenates and elemental arsenic. This was already found out in the 19th century, but has been neglected in publications from the last decades. According to the results of this study the anions of oxomonothioarsenate, oxodithioarsenate, oxotrithioarsenate und tetrathioarsenate are the dominating arsenic species in sulfidic waters. The partitioning of the four species is governed mainly by the sulfide concentration. Beside the high affinity between arsenic and sulfur, the instability of the As-SH group is essential to understand the reactions in the arsenic-sulfur system. As soon as the arsenic-sulfur complexes form As-SH groups (according to their dissociation characteristics) they condensate in separating hydrogen sulfide. Thioarsenates form polymers in the pH range of approx. 7-8.5. Therefore beside the mentioned monomers, thioarsenate polymers can also be important in natural environments. In more acidic solutions they decay into arsenite and sulfur or precipitate as arsenic-pentasulfide. When analyzing arsenic in sulfide containing solutions, it has always to be taken into account that thioarsenates are highly sensitive to oxygen and pH. Therefore, e.g. arsenic speciation by means of HG-AAS is not suitable for sulfidic waters and can wrongly indicate a mixture of arsenite and arsenate. It has previously been supposed that the mobility as well as the toxicity of arsenic increase if the redox state decreases. For sulfidic waters the opposite is probably the case owing to the formation of thioarsenates. The toxicity of arsenite is due to the high reactivity of the As(III) towards sulfohydroxyl groups in proteins. Without a free electron pair and sulfur already incorporated, thioarsenates should be less toxic compared to arsenite. Arsenic can be mobilized out of contaminated soils in form of thioarsenates via infiltration of sulfide solutions or by input of sulfate and biodegradable organic matter. In the presence of iron, thioarsenates can be fixated in sulfidic aquifers as a minor substitute in mackinawite and biogenic pyrite or as arsenic pyrite. Bacterial sulfate reduction is a crucial factor for the mobilization and immobilization of arsenic in reduced aquifers. Considering the negative health impacts of arsenic for millions of people worldwide, as well as the implementation of the mentioned remediation strategies the arsenic-sulfur chemistry deserves closer attention.

Page generated in 0.0587 seconds