• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 110
  • 31
  • 24
  • 16
  • 5
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 239
  • 73
  • 50
  • 27
  • 23
  • 22
  • 21
  • 20
  • 20
  • 19
  • 19
  • 18
  • 18
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Characterization of Cys-34 in serum albumin

Tong, Grace C. 16 October 2003 (has links)
No description available.
32

Spontaneous Unfolding and Refolding of FNIII Domains Assayed by Thiol Exchange

Shah, Riddhi January 2016 (has links)
<p>Fibronectin (FN) is a large extracellular matrix (ECM) protein that is made up of</p><p>type I (FNI), type II (FNII), & type III (FNIII) domains. It assembles into an insoluble</p><p>supra-­‐‑molecular structure: the fibrillar FN matrix. FN fibrillogenesis is a cell‐‑mediated process, which is initiated when FN binds to integrins on the cell surface. The FN matrix plays an important role in cell migration, proliferation, signaling & adhesion. Despite decades of research, the FN matrix is one of the least understood supra-­‐‑molecular protein assemblies. There have been several attempts to elucidate the exact mechanism of matrix assembly resulting in significant progress in the field but it is still unclear as to what are FN-­‐‑FN interactions, the nature of these interactions and the domains of FN that</p><p>are in contact with each other. FN matrix fibrils are elastic in nature. Two models have been proposed to explain the elasticity of the fibrils. The first model: the ‘domain unfolding’ model postulates that the unraveling of FNIII domains under tension explains fibril elasticity.</p><p>The second model relies on the conformational change of FN from compact to extended to explain fibril elasticity. FN contain 15 FNIII domains, each a 7-­‐‑strand beta sandwich. Earlier work from our lab used the technique of labeling a buried Cys to study the ‘domain unfolding’ model. They used mutant FNs containing a buried Cys in a single FNIII domain and found that 6 of the 15 FNIII domains label in matrix fibrils. Domain unfolding due to tension, matrix associated conformational changes or spontaneous folding and unfolding are all possible explanation for labeling of the buried Cys. The present study also uses the technique of labeling a buried Cys to address whether it is spontaneous folding and unfolding that labels FNIII domains in cell culture. We used thiol reactive DTNB to measure the kinetics of labeling of buried Cys in eleven FN III domains over a wide range of urea concentrations (0-­‐‑9M). The kinetics data were globally fit using Mathematica. The results are equivalent to those of H-­‐‑D exchange, and</p><p>provide a comprehensive analysis of stability and unfolding/folding kinetics of each</p><p>domain. For two of the six domains spontaneous folding and unfolding is possibly the reason for labeling in cell culture. For the rest of the four domains it is probably matrix associated conformational changes or tension induced unfolding.</p><p>A long-­‐‑standing debate in the protein-­‐‑folding field is whether unfolding rate</p><p>constants or folding rate constants correlate to the stability of a protein. FNIII domains all have the same ß sandwich structure but very different stabilities and amino acid sequences. Our study analyzed the kinetics of unfolding and folding and stabilities of eleven FNIII domains and our results show that folding rate constants for FNIII domains are relatively similar and the unfolding rates vary widely and correlate to stability. FN forms a fibrillar matrix and the FN-­‐‑FN interactions during matrix fibril formation are not known. FNI 1-­‐‑9 or the N-­‐‑ terminal region is indispensible for matrix formation and its major binding partner has been shown to be FNIII 2. Earlier work from our lab, using FRET analysis showed that the interaction of FNI 1-­‐‑9 with a destabilized FNIII 2 (missing the G strand, FNIII 2ΔG) reduces the FRET efficiency. This efficiency is restored in the presence of FUD (bacterial adhesion from S. pyogenes) that has been known to interact with FNI 1-­‐‑9 via a tandem ß zipper. In the present study we</p><p>use FRET analysis and a series of deletion mutants of FNIII 2ΔG to study the shortest fragment of FNIII 2ΔG that is required to bind FNI 1-­‐‑9. Our results presented here are qualitative and show that FNIII 2ΔC’EFG is the shortest fragment required to bind FNI 1-­‐‑9. Deletion of one more strand abolishes the interaction with FNI 1-­‐‑9.</p> / Dissertation
33

The Role of Gilt in the Cross Presentation of the Melanoma Antigen gp100

Johnson, Kenneth 10 May 2017 (has links)
A Thesis submitted to The University of Arizona College of Medicine - Phoenix in partial fulfillment of the requirements for the Degree of Doctor of Medicine. / In this study we examine the utility of using CD8+ T cell hybridomas to measure the ability of bone marrow dendritic cells (BMDCs) to internalize cancer proteins and display them to cytotoxic T cells, a process termed cross‐presentation. We test the ability of a newly generated T cell hybridoma called BUSA14 to detect cross‐presentation of the melanoma antigen gp100. BUSA14 produces a dose‐dependent response to human and mouse gp100 peptides. However, cross‐presentation of gp100 by BMDCs using SK‐MEL‐28 human melanoma cell lysates or direct MHC class I‐restricted presentation by B16 murine melanoma cells was not detected. Both SKMEL‐28 and B16 cells express gp100 protein by immunoblot, and gp100 as a membrane bound protein may be concentrated by cell fractionation techniques. We validated our crosspresentation assay with another T cell hybridoma B3Z to detect cross‐presentation of the model antigen ovalbumin. Lastly, we determined that although BUSA14 expresses the coreceptor CD8, BUSA14 lacks CD3 expression, which likely impairs the ability of this hybridoma to respond to engagement of the T cell receptor and contributes to the inability to detect presentation of native gp100 protein. To resolve these issues, we plan to use primary gp100‐specific T cells from pmel mice expressing the same T cell receptor as the BUSA14 hybridoma to detect presentation of gp100 protein. Ultimately, we plan to evaluate the requirements for cross‐presentation of gp100, including a role for gamma‐interferon‐inducible lysosomal thiol reductase (GILT), a disulfide bond reducing enzyme.
34

Disulfide-Masked Prochelators Targeting the Iron Metabolism of Cancer: Design, Synthesis, and Biological Investigations

Akam, Eman Abureida, Akam, Eman Abureida January 2016 (has links)
Iron is the most abundant transition metal found in living systems and plays a crucial role in DNA biosynthesis. To accommodate higher replication rates, cancer cells require higher amounts of iron compared to non-neoplastic counterparts. This higher demand for iron renders cancer cells susceptible to iron deprivation, and exposure to iron chelators leads to growth arrest and cell death. Iron chelation strategies employing a wide variety of iron-binding scaffolds are currently under investigation for use in cancer treatment. Although these chelation approaches are effective against several cancer cell types, their use is limited due to toxicity ascribed to indiscriminate metal sequestration and induction of oxidative stress. Prochelation strategies in which the chelating unit remains inactive until triggered by a disease-specific event are expected to increase the specificity of chelation-based therapeutics. Chapter 1 provides an overview of chelation and prochelation based therapies as well as disulfide-based approaches in the design of prodrugs. In Chapter 2, the reduction activation mechanism of disulfide-masked thiosemicarbazone prochelators is described. Whereas disulfide-masked prochelators do not bind iron, reduction of the disulfide bond upon cellular uptake produces active chelators that readily bind intracellular iron. These systems are not active extracellularly; rather, they target the intracellular labile iron pool. We found that the antiproliferative activity of these disulfide-masked prochelators is dependent on the intracellular redox environment, with enhanced toxicity in more reducing conditions. The iron complexes resulting from exposure of cultured cells to the chelation systems were detected intracellularly by electron paramagnetic resonance in intact frozen cells. The compounds in our first series do not engage in intracellular redox chemistry and do not cause oxidative stress. In Chapter 3, the synthesis and characterization of a larger series of disulfide-masked prochelators featuring several classes of tridentate ligands is described. We investigated the iron-binding efficacy of the corresponding chelators, their ability to induce oxidative stress and their cell-cycle effects. We found that these prochelator systems, regardless of the identity of the donor set of atoms, do not result in the intracellular generation of oxidative stress. We also found that treatment of cultured cancer cells with prochelators results in cell-cycle arrest at G1/0 in non-synchronized cells and G2/M in G2-synchronized cells. In addition, we found that all classes of prochelators exhibit antiproliferative effects likely through induction of apoptosis. In Chapter 4, the syntheses and biological evaluations of disulfide-masked prochelators that feature carbohydrate targeting units are described. The sugar conjugates present increased aqueous solubility, compete as effectively as D-glucose for transporter-mediated cellular uptake, and are 6 to 11-fold more selective towards colorectal cancer compared to an aglycone that does not contain a targeting unit. The design of more potent prochelator systems, as well as the design of systems with improved selectivity and aqueous solubility are discussed in Chapter 5.
35

Atividade peroxinitrito redutase de tiol peroxidases em células / Peroxynitrite reductase activity of thiol peroxidases in cells

Condeles, André Luís 24 August 2017 (has links)
A família Tiol Peroxidases (TPxs - Peroxirredoxinas e Glutationa peroxidases) purificadas definitivamente reduzem peróxidos rapidamente (peroxinitrito, ONOOH/ONOO; peróxido de hidrogênio, H2O2), mas nenhuma evidência direta desta atividade foi demonstrada em células vivas. Isto é particularmente importante pois o ciclo catalítico da atividade peróxido redutase de TPxs depende de sucessivas reações de trocas de tióis que podem limitar a velocidade de redução do peróxido. Neste trabalho, esta questão foi investigada em Saccharomyces cerevisiae (Sc) por meio de cinética de competição com um indicador fluorescente que é específico para ONOO (ácido borônico de cumarina; CBA), com a expectativa de que quanto maior a atividade peroxinitrito redutase, menor a oxidação do indicador. Também foi investigado o papel de duas peroxirredoxinas (Prxs) específicas na remoção deste peróxido. O estudo mostrou que a oxidação do indicador CBA dependente de ONOO foi sempre significativamente maior em células de Saccharomyces cerevisiae deficientes em TPxs (cepa 8) relativo a cepa nativa (WT). Além disso, a transfecção do gene que codifica a Prx mais abundante em Saccharomyces cerevisiae (Tsa1) na cepa 8 diminui parcialmente a oxidação de CBA. Além disso, a oxidação de CBA foi maior na cepa deficiente apenas da peroxirredoxina Tsa1 (a mais abundante da família) relativo à cepa WT, mostrando a relevância desta isoforma especificamente. De forma adversa, a oxidação de CBA na cepa deficiente da peroxirredoxina Tsa2 foi semelhante à cepa WT. Também, foi constatado que o processo de remoção de ONOO é catalítico (e não estequiométrico) para crescentes fluxos de peroxinitrito em todas as cepas e condições utilizadas no estudo. Finalmente, o estudo sugere que células possuem sistemas catalíticos peroxinitrito redutase redundantes, já que a própria cepa 8 apresenta e pode modular esta atividade. Estes resultados confirmam a expectativa da relevância de TPxs na remoção de ONOO e por extensão de outros peróxidos biologicamente relevantes e são a primeira evidência direta e em tempo real da atividade peroxinitrito redutase de TPxs em células. / The purified Thiol Peroxidases family (TPxs - Peroxiredoxins and Glutathione peroxidases) rapidly reduces peroxides (peroxynitrite, ONOOH/ONOO-, hydrogen peroxide, H2O2), but no direct evidence of this activity has been demonstrated in living cells. This is particularly important since the catalytic cycle of the TPxs peroxide reductase activity depends on successive thiol exchange reactions, which may limit the rate of peroxide reduction. In this work, this question was investigated in Saccharomyces cerevisiae (Sc) by competition kinetics using a fluorescent indicator that is specific for ONOO- (coumarin boronic acid; CBA). It is expected that the higher the peroxynitrite reductase activity, the lower the oxidation of the indicator. The role of two specific peroxiredoxins (Prxs) in the removal of this peroxide has also been investigated. The study showed that the oxidation of ONOO- dependent CBA indicator was always significantly higher in TPxs-deficient Saccharomyces cerevisiae cells (strain 8) compared to the native strain (WT). In addition, the transfection of the gene encoding the most abundant Prx into Saccharomyces cerevisiae (Tsa1) in the 8 strain partially diminishes CBA oxidation. Besides that, CBA oxidation was greater in the deficient strain only of the peroxiredoxin Tsa1 (the most abundant in the family) compared to the WT strain, showing the relevance of this isoform specifically. On the other hand, CBA oxidation in the deficient strain of the Tsa2 peroxiredoxin was similar to the WT strain. Also, it was found that the ONOO- removal process is catalytic (and not stoichiometric) for increasing peroxynitrite fluxes in all strains and conditions used in the study. Finally, the study suggests that cells have redundant peroxynitrite reductase catalytic systems, since the 8 strain itself presents and can modulate this activity. These results confirm the expectation of the relevance of TPxs in the removal of ONOO- and by extension of other biologically relevant peroxides and are the first direct and real-time evidence of peroxynitrite reductase activity of TPxs in cells.
36

Selective modification of biomolecules using radical mediated hydrothiolation chemistry

Georgiev, David Georgiev January 2018 (has links)
Intracellular protein-protein interactions (PPIs) play a vital role in many biological processes. Although they are viewed as of high biological interest they prove difficult to explore as potential targets for drug discovery. Numerous studies have shown α- helical peptides 'locked' in their respective bioactive structure can greatly increase their performance by increasing their target affinity, resistance to proteolysis as well as facilitating cellular uptake. A striking feature of literature to date is how few studies utilise different stapling techniques when developing inhibitors for PPIs. Current methods generally exploit ruthenium catalysed ring closing metathesis (RCM) or copper catalysed alkyne/azide click (CuAAC) chemistry to generate geometrically constrained peptides. Even though these methods have shown great potential they both share a fundamental limitation as the chemistry can only be employed on small synthetic peptides and cannot be extended to larger proteins. Thiol-ene coupling (TEC) chemistry (Chapter 1) which is often described as a 'click' reaction due to its fast reaction rates, high yields, wide functional group tolerance and insensitivity to ambient oxygen and water has the potential to solve this challenge. Thiol-ene chemistry was investigated as an alternative stapling strategy by employing the naturally occurring amino acid L-cysteine (Cys) as a source of the thiyl radical and L-homoallylglycine (Hag), a non-natural amino acid shown to act as a methionine surrogate in protein synthesis to act as a source of an alkene functionality to form a potentially expressible thioether tether in Chapter 2. However, due to unsatisfactory results from the intramolecular thiol-ene cyclisation at the molar concentrations required for peptide or protein modification, and a promising new lead, the closely related thiol-yne reaction was investigated as an alternative in Chapter 3. Using a small library of peptides (14 mers) derived from α-Synuclein (αSyn), a protein mainly found in the presynaptic terminals in the brain and is believed to be key to the pathological progress of Parkinson's disease, a successful macrocyclisation was achieved between the side chains of cysteine (Cys) and homopropargylglycine (Hpg). Although the vinyl-thioether tether did not confer any helical conformation on the stapled peptides, the results clearly demonstrate a potential route for the development of expressible staples. Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labelling (SDSL) of biomolecules has become a powerful tool for studying the structure and conformational dynamics of biomolecules. Typically, proteins are modified in a site-specific manner by utilising the side chains of cysteine residues to form disulphide bonds with spin active compounds, however, this strategy has its limitations. In Chapter 3 thiol-ene chemistry was investigated as an alternative biorthogonal method to spin label proteins and peptides. The newly synthesised sulfhydryl bearing nitroxide spin label was found to degrade upon exposure to radical promoting conditions, however, an alternative strategy was explored using more classical thiol-Michael chemistry to spin label dehydroalanine (Dha) modified peptides giving the desired spin labelled complex.
37

Synthesis and Analysis of Gold Nanoclusters

Woodworth, Patrick 01 January 2018 (has links)
Gold Nanoclusters are of particular interest due to their many possible applications across a wide range of scientific fields. More specifically, nano-sized gold particles have potential to be used in drug delivery systems, cancer therapy and catalysis. This dissertation focuses on improving our understanding of ligated gold nanoclusters by examining the role of a variety of phosphine based ligands, novel methods to produce monodisperse solutions, and investigating the kinetics of water soluble ligated gold nanoclusters. The addition of ligands to solutions of Au have shown to produce small (< 20 Au atoms) clusters. All nanocluster solutions were prepared in a similar manner. Typically, a gold salt, either Chloro(triphenylphosphine) gold(I) (Au(PPh3)Cl), or Potassium gold (III) chloride (KAuCl4), were dissolved in various solvents. Next, an equal concentration of ligand was added to the solution and stirred until completely dissolved. Finally, all were reduced with 5X the concentration of borane-tert-butylamine (BTBC) after which were sonicated for ~20 minutes. The timing and method of adding the ligands and reducing agent varied depending on the solution and solubility of the ligands. Primarily we used Electrospray Ionization Mass Spectrometry (ESI-MS) and Ultraviolet – Visible Spectroscopy (UV-VIS) for the characterization of samples, however, occasionally Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) and X-Ray Photoemission Spectroscopy (XPS) were used. The most recent research took advantage of the size selective nature of an alpha hemolysin (a-HL) nanopore to investigate the kinetics of thiol-ligated Au clusters ~2 nm in size. The relationship between ligand rigidity and solvent polarity and the size and dispersity of Au cluster suspensions was investigated. We observed the formation of stable monodisperse clusters with the shortest ligand, (L3), independent of solvent. With a longer flexible ligand, (L6), we observed primarily Au8-10 cores depending on the ratio of L6/PPh3. All other ligands yielded polydisperse distributions. These dispersions contained clusters with a nuclearity between 8 and 11, for example [Au10(PPh3)9]3+ in LBn and [Au8(PPh3)7]2+ in LBp, were observed in the initial stages, but they were not stable and precipitated out or plated the glass vial. We also observed that the polarity of the solvent did not play a significant role in the formation of MPC’s, however a correlation between the size of the solvent and MPC formation was observed. The growth and evolution of two unique gold structures was also observed via UV-Vis and ESI-MS. Solutions were prepared which contained Potassium gold (III) chloride and PPh2(CH2)3PPh2, i.e., 1,3-bis(diphenylphosphino)propane, denoted by L3, reduced with Borane tert-butylamine complex (BTBC) in a 1:1 diethyl ether:methanol mix, which yielded a stable [Au11(L3)5]+3. Starting with this known Au11 solution, the addition of Mn2+ has shown to lead to the formation of a stable diphosphine ligated Au8 and a new Au14 species. Additionally, we show that the co-reduction of NiCl2 and Au in the absence of the ligand (L3) does give us a simple method for the production of a monodisperse [Au9(PPh3)8]2+ cluster solution and via electroless deposition does give us a potential low temperature pathway to the formation of a AuNi nanoalloy particle.
38

Advanced clay nanocomposites based on in situ photopolymerization utilizing novel polymerizable organoclays

Kim, Soon Ki 01 May 2012 (has links)
Polymer nanocomposite technology has had significant impact on material design. With the environmental advantages of photopolymerization, a research has recently focused on producing nanocomposites utilizing inexpensive clay particles based on in situ photopolymerization. In this research, novel polymerizable organoclays and thiol-ene photopolymerization have been utilized to develop advanced photopolymer clay nanocomposites and to overcome several limitations in conventional free radical photopolymers. To this end, factors important in nanocomposite processes such as monomer composition, clay dispersion, and photopolymerization behavior in combination with the evolution of ultimate nanocomposite properties have been investigated. For monomer-organoclay compositions, higher chemical compatibility of components induces enhanced clay exfoliation, resulting in photopolymerization rate increases due to an amplified clay template effect. Additionally, by affecting the stoichiometric ratio between thiol and acrylate double bond in the clay gallery, thiolated organoclays enhance thiol-ene copolymerization with increased final thiol conversion while acrylated organoclays encourage acrylate homopolymerization. In accordance with the reaction behavior, incorporation of thiolated organoclays makes polymer chains more flexible with decreased glass transition temperature due to higher formation of thio-ether linkages while adding acrylated organoclays significantly increases the modulus. Photopolymer nanocomposites also help overcome two major drawbacks in conventional free radical photopolymerization, namely severe polymerization shrinkage and oxygen inhibition during polymerization. With addition of a low level of thiol monomers, the oxygen inhibition in various acrylate systems can be overcome by addition of only 5wt% thiolated organoclay. The same amount of polymerizable organoclay also induces up to 90% decreases in the shrinkage stress for acrylate or thiol-acrylate systems. However, nonreactive clays do not reduce the stress substantially and even decreases the polymerization rate in air. Additionally, the clay morphology and polymerization behavior are closely related with evolution of ultimate nanocomposite performance. Use of polymerizable organoclay significantly improves overall toughness of nanocomposites by increasing either modulus or elongation at break based on the type of polymerizable organoclay, which demonstrates the promise of this technology as a modulation and/or optimization tool for nanocomposite properties.
39

Sulfur-functional polymers for biomedical applications / Schwefel-funktionale Polymere für biomedizinische Anwendungen

Kuhlmann, Matthias January 2015 (has links) (PDF)
Aim of this thesis was to combine the versatility of sulfur-chemistry, regarding redox-sensitivity as well as chemo- and site-specific conjugation, with multifunctionality of poly(glycidol)s as an alternative to poly(ethylene glycol). First the homo- and copolymerizations of EEGE and AGE were performed with respect to molar-mass distribution and reaction kinetics. A detailed study was given, varying the polymerization parameters such as DP, counter ion, solvent and monomer influence. It can be concluded that in general the rates for all polymerizations are higher using K+, in contrast to Cs+, as counter ion for the active alkoxide species. Unfortunately, K+ as counter ion commonly leads to a reduced control over polymer dispersity. In this thesis it was shown that the broad molar-mass distributions might be reduced by adding the monomer in a step-wise manner. In experiments with a syringe pump, for continuously adding the monomer, a significant reduction of the dispersities could be found using K+ as counter ion. In analogy to the oxyanionic polymerization of epoxides, the polymerization of episulfides via a thioanionic mechanism with various DPs was successful with thiols/DBU as initiator. In most experiments bimodality could be observed due to the dimerization, caused by oxidation processes by introduced oxygen during synthesis. Reducing this was successful by modifying the degassing procedure, e.g. repeated degassing cycles after each step, i.e. initiation, monomer addition and quenching. Unfortunately, it was not always possible to completely avoid the dimerization due to oxidation. Thiophenol, butanethiol, mercaptoethanol and dithiothreitol were used as thiol initiators, all being capable to initiate the polymerization. With the prediction and the narrow molar-mass distributions, the living character of the polymerization is therefore indicated. Homo- and copolymers of poly(glycidol) were used to functionalize these polymers with side-chains bearing amines, thiols, carboxylic acids and cysteines. The cysteine side-chains were obtained using a newly synthesized thiol-functional thiazolidine. For this, cysteine was protected using a condensation reaction with acetone yielding a dimethyl-substituted thiazolidine. Protection of the ring-amine was obtained via a mixed-anhydride route using formic acid and acetic anhydride. The carboxylic acid of 2,2-dimethylthiazolidine-4-carboxylic acid was activated with CDI and cysteamine attached. The obtained crystalline mercaptothiazolidine was subjected to thiol-ene click chemistry with allyl-functional poly(glycidol). A systematic comparison of thermal- versus photo-initiation showed a much higher yield and reaction rate for the UV-light mediated thiol-ene synthesis with DMPA as photo-initiator. Hydrolysis of the protected thiazolidine-functionalities was obtained upon heating the samples for 5 d at 70 °C in 0.1 M HCl. Dialysis against acetic acid lead to cysteine-functional poly(glycidol)s, storable as the acetate salt even under non-inert atmosphere. An oxidative TNBSA assay was developed to quantify the cysteine-content without the influence of the thiol-functionality. A cooperation partner coupled C-terminal thioester peptides with the cysteine-functional poly(glycidol)s and showed the good accessibility and reactivity of the cysteines along the backbone. SDS-PAGE, HPLC and MALDI-ToF measurements confirmed the successful coupling. / Ziel der Arbeit war es die Vielseitigkeit der Schwefelchemie, hinsichtlich der Redoxsensitivität und chemo- und seitenspezifischer Konjugation, mit der Funktionalisierbarkeit von Poly(glycidol)en, als multifunktionale PEG-Alternative zu kombinieren. Zunächst wurden die Homo- und Copolymerisationen von EEGE und AGE hinsichtlich der Molmassenverteilung und der Reaktionskinetik untersucht. Durch die Variation der Polymerisationsparameter, wie angestrebter Polymerisationsgrad, Gegenion, Lösungsmittel und Monomer, wurde der Einfluss dieser untersucht. Allgemein konnte gezeigt werden, dass die Polymerisationen schneller ablaufen, wenn K+, im Gegensatz zu Cs+, als Gegenion zum aktiven Alkoxidkettenende verwendet wird. Nachteilig bei der Verwendung von K+ als Gegenion ist der Kontrollverlust der Polymerisation, welcher mit einer Erhöhung der Dispersität einhergeht. Es konnte gezeigt werden, dass die Breite der Molmassenverteilung durch die Geschwindigkeit der Monomerzugabe kontrolliert werden kann. Tatsächlich konnte die Dispersität durch die Verwendung einer Spritzenpumpe verbessert werden, da das Monomer mit einer konstanten angepassten Flussrate hinzugefügt wurde. Analog zur oxyanionischen Polymerisation von Epoxiden, war die Polymerisation von Episulfiden mittels thioanionischer Polymerisation ebenfalls möglich. Hierzu wurden verschiedene Polymerisationsgrade von EETGE und ATGE angestrebt und mittels Thiol/DBU als Initiator auch erreicht. In den meisten Fällen war jedoch eine Dimerisierung der Polymere zu beobachten, welche durch die Oxidation der aktiven Thiolatspezies verursacht wurde. Eine Möglichkeit zur Dimerisierungsunterdrückung war die wiederholte Durchführung von Entgasungszyklen nach jedem Arbeitsschritt, z.B. nach Zugabe des Initiators, des Monomers oder nach dem Quenchen. Trotz dieses experimentellen Aufwandes konnte nicht immer ein vollständiger Ausschluss der Dimerisierung erreicht werden. Thiophenol, Butanthiol, Mercaptoethanol und Dithiothreitol wurden als Thiolinitiatoren (in Kombination mit DBU) verwendet und waren alle in der Lage die Polymerisation zu starten. Die Kontrolle des Polymerisationsgrades und die enge Molmassenverteilung der Polymere verdeutlichen, dass die thioanionische Polymerisation ebenfalls lebend verläuft. Glycidol Homo- und Copolymere wurden verwendet und die Seitenketten mit Amin-, Thiol-, Carbonsäure- und Cysteingruppen funktionalisiert. Die Cysteinseitenketten wurden durch ein neues thiolfunktionales Thiazolidin erhalten. Ausgehend von Cystein und Aceton wurde zunächst das Dimethyl-substituierte Thiazolidin erhalten, welches daraufhin am Ring-Amin mit Essigsäureanhydrid und Ameisensäure formyliert wurde. Die Carbonsäurefunktion des Thiazolidins wurde mittels CDI aktiviert und anschließend mit Cysteamin umgesetzt. Hierbei bildete sich das niedermolekulare kristalline thiolfunktionale Thiazolidin, welches mittels Thiol-En-Click Chemie an allyl-funktionales Poly(glycidol) geknüpft werden konnte. Eine systematische Untersuchungen der thermischen und UV-induzierten Thiol-En-Click Chemie zeigte, dass wesentlich höhere Umsätze und Geschwindigkeiten bei der photoinduzierten Reaktion erhalten werden. Mittels 0.1 M HCl konnte bei 70 °C innerhalb von 5 d die Hydrolyse der Thiazolidine im Anschluss erreicht werden. Nach der anschließenden Dialyse der Polymere gegen 0.1 M Essigsäure wurde erfolgreich das Acetatsalz der cysteine-funktionalen Poly(glycidol)e erhalten. Diese waren hinsichtlich der Thioloxidation unter atmosphärischen Bedingungen stabil. Ein oxidativer TNSBA-Assay wurde entwickelt, um die Menge der Cysteine zu quantifizieren und gleichzeitig den störenden Einfluss der Thiole zu unterbinden. Ein Kooperationspartner setzte die cysteinfunktionalisierten Poly(glycidol)e mit C-terminalen Thioestern um und konnte die gute Zugänglichkeit und Aktivität der Cysteine entlang des Polymerrückgrats nachweisen. SDS-PAGE, HPLC und MALDI-ToF Messungen bestätigten die erfolgreiche Konjugation im Anschluss.
40

Substrate Specificity and Structure-Function Analysis of Bacterial Glyoxalase I Enzymes

Mullings, Kadia Yvonne January 2008 (has links)
The glyoxalase pathway is widespread in both prokaryotic and eukaryotic organisms. This system utilizes two enzymes (glyoxalase I (GlxI) and glyoxalase II (GlxII)) to catalyze the formation of D-lactate from the substrates glutathione (GSH) and methylglyoxal (MG). The latter chemical is a harmful byproduct of glycolysis. This thesis gives detailed studies of the behavior of the GlxI enzyme as it pertains to its thiol co-substrate specificity, its structural similarity among its superfamily members (most particularly with the fosfomycin resistance protein (FosA)) and residue identification that would alter its metal selectivity. The thiol co-substrate GSH was thought to be the only thiol utilizied by the glyoxalase system. However, reports identified organisms that utilized the thiols trypanothione (T(SH)2) and glutahionylspermidine (GspdSH) as co-substrates. These organisms, known as the trypanosomes, are very well known in tropical environments to cause diseases. E. coli does not contain T(SH)2 but does contain GspdSH and manufactures the latter in increasing amounts under conditions of cell duress. Substrate specificity studies were conducted replacing GSH with GspdSH and T(SH)2. In addition to this, to ensure the thiols reacted in a true glyoxalase system, substrate specificity studies were also conducted on the second enzyme GlxII and verification of the product D-lactate was performed. To continue, structurally, the enzyme GlxI belongs to the βαβββ superfamily of proteins that are known to have very similar structure but to catalyze very different reactions. Comparing the active site of E. coli GlxI and FosA, there is one significant difference at one residue. Therefore an E56A mutation was performed on GlxI and the mutant bacterium were subjected to growth analysis in the presence of fosfomycin and MG. The mutant enzyme was also tested for its performance in the presence of MG and various divalent metals. Further, the Glx I enzyme from E. coli is known to be active in the presence of non-zinc bivalent metals, while the human counterpart is active in the presence of Zn2+. When one compares GlxI from E. coli with the human GlxI, there are many differences in the primary structure that could be viable areas that determine the metal specificity of the enzyme. Mutation analysis was performed on these areas to determine catalytic performance as well as metal specificity. These studies display how versatile the glyoxalase system is with regard to the use of its thiol co-substrates. These thiols participate in the detoxification pathway for MG in the cell especially under late log phase conditions. Structural studies can give some knowledge concerning the possible evolution of the enzyme among its family members, and is of monumental significance to the scientific community as it relates to enzyme metal selectivity and the development of enzymes over time.

Page generated in 0.0356 seconds