• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Metal fate and sensitivity in the aquatic tropical vegetable <i>Ipomoea aquatica</i>

Göthberg, Agneta January 2008 (has links)
<p>The aquatic plant <i>Ipomoea aquatica</i> is a popular vegetable in Southeast Asia, often cultivated in nutrient rich and polluted waters. The overall aim of this thesis was to estimate potential risks for human health and reduced plant growth due to accumulation and toxicity of total-Hg, methyl-Hg, Cd and Pb.</p><p>In plants from cultivations in Thailand, the concentrations of Cd and Pb in the shoots were well beneath recommended maximum values for human consumption, but at some sites the Hg concentrations were high. It was demonstrated that <i>I. aquatica</i> has the capacity to accumulate much higher Cd and Pb concentrations in the shoots than found in field-cultivations, before exhibiting toxic symptoms. The Hg concentrations, however, occasionally reached levels that are toxic for the plant. Up to11% of total-Hg was methyl-Hg, the most toxic Hg species, though at one site it was 50-100%. To study if methyl-Hg is formed in <i>I.</i> <i>aquatica</i>, plants were exposed to inorganic Hg through the roots. Of the Hg that reached the young, metabolically active parts of the shoots, a part was transformed to methyl-Hg. A major proportion of absorbed metals was retained in the roots, which had a high tolerance for high internal metal concentrations. </p><p>The nutrient level did influence accumulation and effects of Hg, Cd and Pb in<i> I. aquatica</i>. Low external nutrient levels resulted in increased metal accumulation in the shoots and in metal-induced toxic effects in the plant at low external metal levels. A generous supply of sulphur or nitrogen induced formation of thiol-rich peptides in <i>I. aquatica</i>, compounds that have a metal detoxifying effect in plants. </p><p>To conclude, the levels of Cd and Pb in field cultivated <i>I. aquatica</i> do not pose any apparent threat to human health or risk for reduced plant growth. The levels of Hg however, were high at some sites and could be a health threat, for children and foetuses in particular, and especially considering the presence of methyl-Hg. The use of fertilizers is favourable as it reduces the risk for increased metal concentrations in <i>I.</i> <i>aquatica</i> and for reduced crop yields. </p>
2

Metal fate and sensitivity in the aquatic tropical vegetable Ipomoea aquatica

Göthberg, Agneta January 2008 (has links)
The aquatic plant Ipomoea aquatica is a popular vegetable in Southeast Asia, often cultivated in nutrient rich and polluted waters. The overall aim of this thesis was to estimate potential risks for human health and reduced plant growth due to accumulation and toxicity of total-Hg, methyl-Hg, Cd and Pb. In plants from cultivations in Thailand, the concentrations of Cd and Pb in the shoots were well beneath recommended maximum values for human consumption, but at some sites the Hg concentrations were high. It was demonstrated that I. aquatica has the capacity to accumulate much higher Cd and Pb concentrations in the shoots than found in field-cultivations, before exhibiting toxic symptoms. The Hg concentrations, however, occasionally reached levels that are toxic for the plant. Up to11% of total-Hg was methyl-Hg, the most toxic Hg species, though at one site it was 50-100%. To study if methyl-Hg is formed in I. aquatica, plants were exposed to inorganic Hg through the roots. Of the Hg that reached the young, metabolically active parts of the shoots, a part was transformed to methyl-Hg. A major proportion of absorbed metals was retained in the roots, which had a high tolerance for high internal metal concentrations. The nutrient level did influence accumulation and effects of Hg, Cd and Pb in I. aquatica. Low external nutrient levels resulted in increased metal accumulation in the shoots and in metal-induced toxic effects in the plant at low external metal levels. A generous supply of sulphur or nitrogen induced formation of thiol-rich peptides in I. aquatica, compounds that have a metal detoxifying effect in plants. To conclude, the levels of Cd and Pb in field cultivated I. aquatica do not pose any apparent threat to human health or risk for reduced plant growth. The levels of Hg however, were high at some sites and could be a health threat, for children and foetuses in particular, and especially considering the presence of methyl-Hg. The use of fertilizers is favourable as it reduces the risk for increased metal concentrations in I. aquatica and for reduced crop yields.
3

Synthèse prébiotique plausible de peptides riches en thiol : la réaction des aminothiols avec les aminonitriles / A plausible prebiotic synthesis of thiol-rich peptides : the reaction of aminothiols with aminonitriles

Shalayel, Ibrahim 17 December 2018 (has links)
La vie a émergé sur Terre il y a probablement 3,8 milliards d'années, sur une planète largement recouverte d'eau. Ce travail porte sur la synthèse prébiotique de peptides, en particulier de peptides riches en thiol. Nous avons étudié les réactions des aminonitriles (les premiers produits de la réaction de Strecker) avec la cystéine et l'homocystéine. Elles conduisent à la formation de cycles à 5 ou 6 chaînons qui sont ensuite hydrolysés pour donner les dipeptides correspondants (aa-Cys ou aa-Hcy). Les dipeptides contenant un thiol obtenus sont capables de favoriser la formation de chaînes peptidiques plus longues via des liaisons thioesters et de favoriser la formation de certains hétérocycles. L'homocystéine nitrile se cyclise dans l'eau pour former l'homocystéine thiolactone, qui présente une double réactivité, la thiolactone est ouverte par des amines puis on observe une condensation de l'aminothiol ainsi formé avec les nitriles. Le nitrile de cystéine et le thioester de S-éthyle de la cystéine conduisent à la formation de polycystéine, tandis que les molécules de type Cys-aa-CN donnent des polypeptides linéaires et cycliques. Nos résultats soutiennent l’hypothèse que des peptides contenant des thiols auraient joué un rôle important dans les premiers stades du développement de la vie. / Life emerged on Earth probably about 3.8 billion years ago, on a planet that was largely covered by water. This work focuses on the prebiotic synthesis of peptides, especially thiol-rich ones. We studied the reactions of aminonitriles (the first products of the Strecker reaction) with cysteine and homocysteine. These reactions lead to the formation of 5- or 6-membered rings which are then hydrolysed to give the corresponding dipeptides (aa-Cys or aa-Hcy). The obtained thiol-containing dipeptides are able to promote the formation of longer peptide chains via thioesters bonds, and to promote the formation of some heterocycles. Homocysteine nitrile cyclizes in water to form homocysteine thiolactone, which shows a double reactivity, thiolactone opening by amines followed by aminothiol condensation reaction with nitriles. Cysteine nitrile and the S-ethyl thioester of cysteine lead to the formation of polycysteine, while Cys-aa-CN molecules gives linear and cyclic polypeptides. Our results support the hypothesis that thiol-containing peptides would have been important molecules in the early stages of life development.

Page generated in 0.0347 seconds