• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of a novel soybean candidate glutathione peroxidase/thioredoxin-dependent peroxidase under salt stress

Adams, Ruqaiyah January 2012 (has links)
The study aimed to investigate the following: 1. Investigate a putative glutathione peroxidase gene (Glyma17g34110) within Glycine max by an in silico analysis and spatial expression. 2. Determine the effects of exogenously applied nitric oxide on the expression of Glyma17g34110. 3. Investigate the antioxidant mechanism with attention to Glyma17g34110,reactive oxygen species and cell death in the response to salt stress. 4. Establish whether Glyma17g34110 is a glutathione peroxidase or thioredoxindependent peroxidase gene. / Magister Scientiae - MSc
2

Characterization of a novel soybean candidate glutathione peroxidase/thioredoxin-dependent peroxidase under salt stress

Adams, Ruqaiyah January 2012 (has links)
The production of reactive oxygen species (ROS) is prominent in all aerobic metabolisms including plants. For this reason, the redox homeostasis of the production and scavenging of these intermediates is imperative for growth, development and survival during unfavourable conditions. In this study, a putative glutathione peroxidase gene (Glyma17g34110) from Glycine max (soybean) was identified and analyzed. The successful characterisation of Glyma17g34110 provided evidence of it being a glutathione peroxidase using glutathione as its preferred electron donor and substrate. Furthermore, it is known that antioxidant enzymes such as GPX exist in various tissues, performing a diverse set of functions. By a bioinformatic analysis of Glyma17g34110 and its promoter region, it was indicated that Glyma17g34110 could be a putative chloroplast protein that could play an important role in photosynthesis.One of the major factors affecting plant growth and development worldwide is abiotic stresses such as salinity. In the presence of salinity the production of harmful ROS is increased, resulting in detrimental reactions with important biological features (DNA, protein and lipid membranes), leading to cell death. The analysis of Glyma17g34110 under salt stress revealed that it is a salt sensitive gene and thus, the down-regulation of Glyma17g34110 could be due to the lack of known defence and response cis-acting elements present in the promoter region. Furthermore, it was proven in previous studies that the application of exogenous nitric oxide (NO) increases the activity of antioxidant enzymes. In this thesis it was observed that the presence of exogenously applied NO increased the expression of Glyma17g34110 tremendously in all soybean tissues (leaves, roots and nodules) investigated.Studies have found numerous cis-acting elements to be NO responsive, however, none of these elements were found in the promoter region upstream of glyma17g34110. This suggests that novel cis-acting elements could be present in the promoter region of Glyma17g34110.Thus, increasing the expression of Glyma17g34110 during salinity in the presence of NO, as well as the identification of these novel cis-acting elements, could lead to the enhancement of the defence mechanisms against ROS, which could lead to increasing plant tolerance to stress. / >Magister Scientiae - MSc
3

Characterization of a novel soybean candidate glutathione peroxidase/thioredoxin-dependent peroxidase under salt stress

Adams, Ruqaiyah January 2012 (has links)
>Magister Scientiae - MSc / The production of reactive oxygen species (ROS) is prominent in all aerobic metabolisms including plants. For this reason, the redox homeostasis of the production and scavenging of these intermediates is imperative for growth, development and survival during unfavourable conditions. In this study, a putative glutathione peroxidase gene (Glyma17g34110) from Glycine max (soybean) was identified and analyzed. The successful characterisation of Glyma17g34110 provided evidence of it being a glutathione peroxidase using glutathione as its preferred electron donor and substrate. Furthermore, it is known that antioxidant enzymes such as GPX exist in various tissues, performing a diverse set of functions. By a bioinformatic analysis of Glyma17g34110 and its promoter region, it was indicated that Glyma17g34110 could be a putative chloroplast protein that could play an important role in photosynthesis.One of the major factors affecting plant growth and development worldwide is abiotic stresses such as salinity. In the presence of salinity the production of harmful ROS is increased, resulting in detrimental reactions with important biological features (DNA, protein and lipid membranes), leading to cell death. The analysis of Glyma17g34110 under salt stress revealed that it is a salt sensitive gene and thus, the down-regulation of Glyma17g34110 could be due to the lack of known defence and response cis-acting elements present in the promoter region. Furthermore, it was proven in previous studies that the application of exogenous nitric oxide (NO) increases the activity of antioxidant enzymes. In this thesis it was observed that the presence of exogenously applied NO increased the expression of Glyma17g34110 tremendously in all soybean tissues (leaves, roots and nodules) investigated.Studies have found numerous cis-acting elements to be NO responsive, however, none of these elements were found in the promoter region upstream of glyma17g34110. This suggests that novel cis-acting elements could be present in the promoter region of Glyma17g34110.Thus, increasing the expression of Glyma17g34110 during salinity in the presence of NO, as well as the identification of these novel cis-acting elements, could lead to the enhancement of the defence mechanisms against ROS, which could lead to increasing plant tolerance to stress.

Page generated in 0.0912 seconds