• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 19
  • 11
  • 9
  • 3
  • 3
  • 2
  • Tagged with
  • 140
  • 43
  • 30
  • 30
  • 29
  • 26
  • 17
  • 14
  • 13
  • 13
  • 13
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Control of p53 tumor suppressor and peroxiredoxin activity through shifts in cellular redox balance /

Stoner, Christopher S. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2008. / Printout. Includes bibliographical references. Also available on the World Wide Web.
32

Studium interakcí ASK1 kinasy s thioredoxinem. / Study of interaction between ASK1 kinase and thioredoxin.

Koláčková, Kateřina January 2014 (has links)
MAP kinase signaling cascade plays an important role in the cellular response to various stress stimuli from the external environment. This signaling cascade is divided into three levels: MAP kinase kinase kinases (MAP3K) phosphorylate and thus activate MAP kinase kinases (MAP2K) and those subsequently phosphorylate and thus activate MAP kinase (MAPK) pathway, which regulates many cellular functions such as apoptosis, cell differentiation and morphogenesis. One of the important MAP3K is protein kinase ASK1 (Apoptosis signal-regulating kinase 1), which is an important regulator of cellular immune and stress responses. Given that the increased activity of ASK1 is related to the development of serious diseases such as cancer, cardiovascular and neurodegenerative diseases, ASK1 is an interesting target in the pharmacy in the development of new drugs. Human ASK1 consists of 1374 amino acids and is divided into three domains: a central Ser/Thr catalytic domain and two coiled-coil domains, of which the first is located at the N- and the second at the C-terminus of the molecule of this protein kinase. ASK1 is regulated by its binding partners, which include a small cellular redox protein thioredoxin (Trx-1), which binds to the N-terminal part of ASK1. Trx-1 is a potent antioxidant and so it protects cells...
33

Ethanol-induced liver injury: preventing apoptosis

Cohen, Jessica I. 23 January 2010 (has links)
No description available.
34

Genetic manipulation of Grain storage protein digestibility in sorghum.

Phuong Mai Hoang Unknown Date (has links)
Abstract Sorghum (Sorghum bicolor L. Moench) is the world’s fifth most common cereal crop and provides an important source of staple food in the semi-arid tropics and feed in many other countries. The plant has the ability to grow and yield in hot and dry climates. However, sorghum grain is less digestible than the other major staple crops such as rice, wheat and maize. Therefore, the aim of this project is to improve the nutritional quality of sorghum grain by applying cutting-edge biotechnologies which involve the use of tissue culture and genetic transformation. Recently, Agrobacterium has been used by many researchers to introduce foreign genes into the sorghum genome. This method has some advantages compared to particle bombardment, however, one limitation is the regeneration of transgenic tissues. In this study successfully transformed sorghum using Agrobacterium and regenerated transgenic plants via an organogenic tissue culture system is reported. The results of transformation efficiency were achieved with co-cultivation after 48 hours. Regeneration of the sorghum transgenic plants was improved by using organogenic tissues. The GUS reporter gene and the Hpt and bar selectable markers were used. Southern blots and PCR were used to confirm transgene presence in the T0 and T1 generations. In this study, stable transgenic sorghum plants have been produced. The factors found to most influence Agrobacterium transformation were the type of organogenic tissue from different genotypes. The genotypes and the period of co-cultivation, as well as the selectable marker gene and selection strategy used. However, the transformation efficiency from this method was low (1.12%) compared with the previous efficiencies published for Agrobacterium-mediated sorghum transformation. Therefore, to improve the transformation efficiency for this method further work may need to be done. Thioredoxin genes were transformed into the sorghum genotype 296B by particle bombardment. In the first experiment no transgenics over-expressing trx and ntr were confirmed by Southern blot. In subsequent experiments, a limited number of transgenics of the T1 generation were confirmed and used for further analysis. A transgenic line with both trx & ntr was created by crossing a trx line and a ntr line. The 2 genes in this line were confirmed and showed different levels of expression by Real Time PCR. Also, the level of expression in the T2 hybrid plants was higher compared to the T1 parents. The grains from the transgenic lines were different in gelatinization, viscosity, pasting properties and in-vitro digestibility. The ntr line was confirmed to be more digestible than the other transgenic lines and a non-transgenic line. There was a significant increase of 11% (P=0.02) in digestibility of the sorghum ntr line over the non-transgenic. However, the transgenic sorghum seeds did not germinate after storage for more than 6 months. Differences in the morphology of the starch granules and protein matrix of the transgenic lines when compared to non-transgenic were observed with Scanning Electron microscopy. The difference was observed from the transition to the central zone. Pores appeared in the starch granules of the sorghum transgenic lines, but not in the non-transgenic. This may be directly related to the changes in gelatinization, viscosity, pasting and digestibility. To find regulatory sequences which can direct expression of transgenes in developing endosperm, the β-kafirin promoter was identified and cloned. Two constructs of varying length were made to test tissue specificity of the promoter, by replacing the Ubi promoter of the pUBIGUS vector. The GUS gene was used as the marker gene under the control of the amplified β-kafirin promoter. The result was determined on different explants of sorghum by transient expression via particle bombardment. The result shows the successful identification of the β-kafirin promoter region and its effect on transient expression levels. Agrobacterium transformation of sorghum organogenic tissue was developed. The digestibility of grain sorghum was improved by over-expressing the thioredoxin genes. In conclusion, the sorghum grain digestibility can be improved by transforming sorghum with thioredoxin genes, via Agrobacterium-mediated transformation. Further experimentation is required to identify regulatory sequences to optimise transgene expression in sorghum endosperm. In order to determine the reason behind the difficulties of seed germination, larger numbers of independent transgenic lines need to be generated and tested to determine whether over-expression of trx & ntr always has detrimental effects on seed longevity and germination.
35

Genetic manipulation of Grain storage protein digestibility in sorghum.

Phuong Mai Hoang Unknown Date (has links)
Abstract Sorghum (Sorghum bicolor L. Moench) is the world’s fifth most common cereal crop and provides an important source of staple food in the semi-arid tropics and feed in many other countries. The plant has the ability to grow and yield in hot and dry climates. However, sorghum grain is less digestible than the other major staple crops such as rice, wheat and maize. Therefore, the aim of this project is to improve the nutritional quality of sorghum grain by applying cutting-edge biotechnologies which involve the use of tissue culture and genetic transformation. Recently, Agrobacterium has been used by many researchers to introduce foreign genes into the sorghum genome. This method has some advantages compared to particle bombardment, however, one limitation is the regeneration of transgenic tissues. In this study successfully transformed sorghum using Agrobacterium and regenerated transgenic plants via an organogenic tissue culture system is reported. The results of transformation efficiency were achieved with co-cultivation after 48 hours. Regeneration of the sorghum transgenic plants was improved by using organogenic tissues. The GUS reporter gene and the Hpt and bar selectable markers were used. Southern blots and PCR were used to confirm transgene presence in the T0 and T1 generations. In this study, stable transgenic sorghum plants have been produced. The factors found to most influence Agrobacterium transformation were the type of organogenic tissue from different genotypes. The genotypes and the period of co-cultivation, as well as the selectable marker gene and selection strategy used. However, the transformation efficiency from this method was low (1.12%) compared with the previous efficiencies published for Agrobacterium-mediated sorghum transformation. Therefore, to improve the transformation efficiency for this method further work may need to be done. Thioredoxin genes were transformed into the sorghum genotype 296B by particle bombardment. In the first experiment no transgenics over-expressing trx and ntr were confirmed by Southern blot. In subsequent experiments, a limited number of transgenics of the T1 generation were confirmed and used for further analysis. A transgenic line with both trx & ntr was created by crossing a trx line and a ntr line. The 2 genes in this line were confirmed and showed different levels of expression by Real Time PCR. Also, the level of expression in the T2 hybrid plants was higher compared to the T1 parents. The grains from the transgenic lines were different in gelatinization, viscosity, pasting properties and in-vitro digestibility. The ntr line was confirmed to be more digestible than the other transgenic lines and a non-transgenic line. There was a significant increase of 11% (P=0.02) in digestibility of the sorghum ntr line over the non-transgenic. However, the transgenic sorghum seeds did not germinate after storage for more than 6 months. Differences in the morphology of the starch granules and protein matrix of the transgenic lines when compared to non-transgenic were observed with Scanning Electron microscopy. The difference was observed from the transition to the central zone. Pores appeared in the starch granules of the sorghum transgenic lines, but not in the non-transgenic. This may be directly related to the changes in gelatinization, viscosity, pasting and digestibility. To find regulatory sequences which can direct expression of transgenes in developing endosperm, the β-kafirin promoter was identified and cloned. Two constructs of varying length were made to test tissue specificity of the promoter, by replacing the Ubi promoter of the pUBIGUS vector. The GUS gene was used as the marker gene under the control of the amplified β-kafirin promoter. The result was determined on different explants of sorghum by transient expression via particle bombardment. The result shows the successful identification of the β-kafirin promoter region and its effect on transient expression levels. Agrobacterium transformation of sorghum organogenic tissue was developed. The digestibility of grain sorghum was improved by over-expressing the thioredoxin genes. In conclusion, the sorghum grain digestibility can be improved by transforming sorghum with thioredoxin genes, via Agrobacterium-mediated transformation. Further experimentation is required to identify regulatory sequences to optimise transgene expression in sorghum endosperm. In order to determine the reason behind the difficulties of seed germination, larger numbers of independent transgenic lines need to be generated and tested to determine whether over-expression of trx & ntr always has detrimental effects on seed longevity and germination.
36

Genetic manipulation of Grain storage protein digestibility in sorghum.

Phuong Mai Hoang Unknown Date (has links)
Abstract Sorghum (Sorghum bicolor L. Moench) is the world’s fifth most common cereal crop and provides an important source of staple food in the semi-arid tropics and feed in many other countries. The plant has the ability to grow and yield in hot and dry climates. However, sorghum grain is less digestible than the other major staple crops such as rice, wheat and maize. Therefore, the aim of this project is to improve the nutritional quality of sorghum grain by applying cutting-edge biotechnologies which involve the use of tissue culture and genetic transformation. Recently, Agrobacterium has been used by many researchers to introduce foreign genes into the sorghum genome. This method has some advantages compared to particle bombardment, however, one limitation is the regeneration of transgenic tissues. In this study successfully transformed sorghum using Agrobacterium and regenerated transgenic plants via an organogenic tissue culture system is reported. The results of transformation efficiency were achieved with co-cultivation after 48 hours. Regeneration of the sorghum transgenic plants was improved by using organogenic tissues. The GUS reporter gene and the Hpt and bar selectable markers were used. Southern blots and PCR were used to confirm transgene presence in the T0 and T1 generations. In this study, stable transgenic sorghum plants have been produced. The factors found to most influence Agrobacterium transformation were the type of organogenic tissue from different genotypes. The genotypes and the period of co-cultivation, as well as the selectable marker gene and selection strategy used. However, the transformation efficiency from this method was low (1.12%) compared with the previous efficiencies published for Agrobacterium-mediated sorghum transformation. Therefore, to improve the transformation efficiency for this method further work may need to be done. Thioredoxin genes were transformed into the sorghum genotype 296B by particle bombardment. In the first experiment no transgenics over-expressing trx and ntr were confirmed by Southern blot. In subsequent experiments, a limited number of transgenics of the T1 generation were confirmed and used for further analysis. A transgenic line with both trx & ntr was created by crossing a trx line and a ntr line. The 2 genes in this line were confirmed and showed different levels of expression by Real Time PCR. Also, the level of expression in the T2 hybrid plants was higher compared to the T1 parents. The grains from the transgenic lines were different in gelatinization, viscosity, pasting properties and in-vitro digestibility. The ntr line was confirmed to be more digestible than the other transgenic lines and a non-transgenic line. There was a significant increase of 11% (P=0.02) in digestibility of the sorghum ntr line over the non-transgenic. However, the transgenic sorghum seeds did not germinate after storage for more than 6 months. Differences in the morphology of the starch granules and protein matrix of the transgenic lines when compared to non-transgenic were observed with Scanning Electron microscopy. The difference was observed from the transition to the central zone. Pores appeared in the starch granules of the sorghum transgenic lines, but not in the non-transgenic. This may be directly related to the changes in gelatinization, viscosity, pasting and digestibility. To find regulatory sequences which can direct expression of transgenes in developing endosperm, the β-kafirin promoter was identified and cloned. Two constructs of varying length were made to test tissue specificity of the promoter, by replacing the Ubi promoter of the pUBIGUS vector. The GUS gene was used as the marker gene under the control of the amplified β-kafirin promoter. The result was determined on different explants of sorghum by transient expression via particle bombardment. The result shows the successful identification of the β-kafirin promoter region and its effect on transient expression levels. Agrobacterium transformation of sorghum organogenic tissue was developed. The digestibility of grain sorghum was improved by over-expressing the thioredoxin genes. In conclusion, the sorghum grain digestibility can be improved by transforming sorghum with thioredoxin genes, via Agrobacterium-mediated transformation. Further experimentation is required to identify regulatory sequences to optimise transgene expression in sorghum endosperm. In order to determine the reason behind the difficulties of seed germination, larger numbers of independent transgenic lines need to be generated and tested to determine whether over-expression of trx & ntr always has detrimental effects on seed longevity and germination.
37

Genetic manipulation of Grain storage protein digestibility in sorghum.

Phuong Mai Hoang Unknown Date (has links)
Abstract Sorghum (Sorghum bicolor L. Moench) is the world’s fifth most common cereal crop and provides an important source of staple food in the semi-arid tropics and feed in many other countries. The plant has the ability to grow and yield in hot and dry climates. However, sorghum grain is less digestible than the other major staple crops such as rice, wheat and maize. Therefore, the aim of this project is to improve the nutritional quality of sorghum grain by applying cutting-edge biotechnologies which involve the use of tissue culture and genetic transformation. Recently, Agrobacterium has been used by many researchers to introduce foreign genes into the sorghum genome. This method has some advantages compared to particle bombardment, however, one limitation is the regeneration of transgenic tissues. In this study successfully transformed sorghum using Agrobacterium and regenerated transgenic plants via an organogenic tissue culture system is reported. The results of transformation efficiency were achieved with co-cultivation after 48 hours. Regeneration of the sorghum transgenic plants was improved by using organogenic tissues. The GUS reporter gene and the Hpt and bar selectable markers were used. Southern blots and PCR were used to confirm transgene presence in the T0 and T1 generations. In this study, stable transgenic sorghum plants have been produced. The factors found to most influence Agrobacterium transformation were the type of organogenic tissue from different genotypes. The genotypes and the period of co-cultivation, as well as the selectable marker gene and selection strategy used. However, the transformation efficiency from this method was low (1.12%) compared with the previous efficiencies published for Agrobacterium-mediated sorghum transformation. Therefore, to improve the transformation efficiency for this method further work may need to be done. Thioredoxin genes were transformed into the sorghum genotype 296B by particle bombardment. In the first experiment no transgenics over-expressing trx and ntr were confirmed by Southern blot. In subsequent experiments, a limited number of transgenics of the T1 generation were confirmed and used for further analysis. A transgenic line with both trx & ntr was created by crossing a trx line and a ntr line. The 2 genes in this line were confirmed and showed different levels of expression by Real Time PCR. Also, the level of expression in the T2 hybrid plants was higher compared to the T1 parents. The grains from the transgenic lines were different in gelatinization, viscosity, pasting properties and in-vitro digestibility. The ntr line was confirmed to be more digestible than the other transgenic lines and a non-transgenic line. There was a significant increase of 11% (P=0.02) in digestibility of the sorghum ntr line over the non-transgenic. However, the transgenic sorghum seeds did not germinate after storage for more than 6 months. Differences in the morphology of the starch granules and protein matrix of the transgenic lines when compared to non-transgenic were observed with Scanning Electron microscopy. The difference was observed from the transition to the central zone. Pores appeared in the starch granules of the sorghum transgenic lines, but not in the non-transgenic. This may be directly related to the changes in gelatinization, viscosity, pasting and digestibility. To find regulatory sequences which can direct expression of transgenes in developing endosperm, the β-kafirin promoter was identified and cloned. Two constructs of varying length were made to test tissue specificity of the promoter, by replacing the Ubi promoter of the pUBIGUS vector. The GUS gene was used as the marker gene under the control of the amplified β-kafirin promoter. The result was determined on different explants of sorghum by transient expression via particle bombardment. The result shows the successful identification of the β-kafirin promoter region and its effect on transient expression levels. Agrobacterium transformation of sorghum organogenic tissue was developed. The digestibility of grain sorghum was improved by over-expressing the thioredoxin genes. In conclusion, the sorghum grain digestibility can be improved by transforming sorghum with thioredoxin genes, via Agrobacterium-mediated transformation. Further experimentation is required to identify regulatory sequences to optimise transgene expression in sorghum endosperm. In order to determine the reason behind the difficulties of seed germination, larger numbers of independent transgenic lines need to be generated and tested to determine whether over-expression of trx & ntr always has detrimental effects on seed longevity and germination.
38

Genetic manipulation of Grain storage protein digestibility in sorghum.

Phuong Mai Hoang Unknown Date (has links)
Abstract Sorghum (Sorghum bicolor L. Moench) is the world’s fifth most common cereal crop and provides an important source of staple food in the semi-arid tropics and feed in many other countries. The plant has the ability to grow and yield in hot and dry climates. However, sorghum grain is less digestible than the other major staple crops such as rice, wheat and maize. Therefore, the aim of this project is to improve the nutritional quality of sorghum grain by applying cutting-edge biotechnologies which involve the use of tissue culture and genetic transformation. Recently, Agrobacterium has been used by many researchers to introduce foreign genes into the sorghum genome. This method has some advantages compared to particle bombardment, however, one limitation is the regeneration of transgenic tissues. In this study successfully transformed sorghum using Agrobacterium and regenerated transgenic plants via an organogenic tissue culture system is reported. The results of transformation efficiency were achieved with co-cultivation after 48 hours. Regeneration of the sorghum transgenic plants was improved by using organogenic tissues. The GUS reporter gene and the Hpt and bar selectable markers were used. Southern blots and PCR were used to confirm transgene presence in the T0 and T1 generations. In this study, stable transgenic sorghum plants have been produced. The factors found to most influence Agrobacterium transformation were the type of organogenic tissue from different genotypes. The genotypes and the period of co-cultivation, as well as the selectable marker gene and selection strategy used. However, the transformation efficiency from this method was low (1.12%) compared with the previous efficiencies published for Agrobacterium-mediated sorghum transformation. Therefore, to improve the transformation efficiency for this method further work may need to be done. Thioredoxin genes were transformed into the sorghum genotype 296B by particle bombardment. In the first experiment no transgenics over-expressing trx and ntr were confirmed by Southern blot. In subsequent experiments, a limited number of transgenics of the T1 generation were confirmed and used for further analysis. A transgenic line with both trx & ntr was created by crossing a trx line and a ntr line. The 2 genes in this line were confirmed and showed different levels of expression by Real Time PCR. Also, the level of expression in the T2 hybrid plants was higher compared to the T1 parents. The grains from the transgenic lines were different in gelatinization, viscosity, pasting properties and in-vitro digestibility. The ntr line was confirmed to be more digestible than the other transgenic lines and a non-transgenic line. There was a significant increase of 11% (P=0.02) in digestibility of the sorghum ntr line over the non-transgenic. However, the transgenic sorghum seeds did not germinate after storage for more than 6 months. Differences in the morphology of the starch granules and protein matrix of the transgenic lines when compared to non-transgenic were observed with Scanning Electron microscopy. The difference was observed from the transition to the central zone. Pores appeared in the starch granules of the sorghum transgenic lines, but not in the non-transgenic. This may be directly related to the changes in gelatinization, viscosity, pasting and digestibility. To find regulatory sequences which can direct expression of transgenes in developing endosperm, the β-kafirin promoter was identified and cloned. Two constructs of varying length were made to test tissue specificity of the promoter, by replacing the Ubi promoter of the pUBIGUS vector. The GUS gene was used as the marker gene under the control of the amplified β-kafirin promoter. The result was determined on different explants of sorghum by transient expression via particle bombardment. The result shows the successful identification of the β-kafirin promoter region and its effect on transient expression levels. Agrobacterium transformation of sorghum organogenic tissue was developed. The digestibility of grain sorghum was improved by over-expressing the thioredoxin genes. In conclusion, the sorghum grain digestibility can be improved by transforming sorghum with thioredoxin genes, via Agrobacterium-mediated transformation. Further experimentation is required to identify regulatory sequences to optimise transgene expression in sorghum endosperm. In order to determine the reason behind the difficulties of seed germination, larger numbers of independent transgenic lines need to be generated and tested to determine whether over-expression of trx & ntr always has detrimental effects on seed longevity and germination.
39

Histopathological features in the progression of idiopathic pulmonary fibrosis/usual interstitial pneumonia with special emphasis on the redox modulating enzymes of the human lung

Tiitto, L. (Leena) 13 September 2006 (has links)
Abstract Interstitial lung diseases (ILD), including interstitial pneumonias (IP), represent disorders with variable degrees of parenchymal inflammation and/or fibrosis offer an ideal model to investigate the histopathological features in relation to the course of these diseases. The most common IP is idiopathic pulmonary fibrosis (IPF) with the histological pattern of usual interstitial pneumonia (UIP) exhibiting the histological hallmark of fibroblast foci (FF). Surgical lung biopsy (SLB) is not usually needed for diagnosis of IPF, but the lung biopsy samples taken by SLB confers the diagnosis in atypical cases. The safety of SLB in IPF/UIP has been a controversial issue. The acute exacerbation occasionally occurs during the course of IPF/UIP, but pathological features related to this event are poorly understood. Recent studies suggest that one important determinant in the pathogenesis of ILDs, as in IPF, is oxidant stress and an imbalance of the redox-state in the lung. Thiol containing redox-regulated proteins which paticipate in the antioxidant defence of the lung include thiorexin (Trx) and gamma-glutamylcysteine synthetase (γGCS), also called glutamate-cysteine ligase (GLCL), the rate-limiting enzyme of glutathione (GSH) synthesis. The goal of this research was to evaluate the safety of SLB and the relationships between the histological findings and the course of IPF/UIP, and to investigate the above mentioned defense mechanisms in a variety of ILDs by means of immmunohistochemical analyses, Western Blotting and immunoelectronmicroscopy. No deaths occurred in the following 30 days after 34 video-assisted thoracoscopic lung biopsy (VATS). The number of FF in the lung sample predicted the survival, but it was not associated with acute exacerbation of IPF/UIP before death. Diffuse alveolar damage was a common feature in autopsy samples. The studied redox regulated defense enzymes were expressed in bronchial epithelium, metaplastic alveolar epithelium and alveolar macrophages, but the fibrotic areas generally showed no expression. In IPF/UIP VATS is a safe diagnostic method and counting the number of FF represents a reproducible and reliable method for predicting patient survival. Alterations in the redox regulated defense enzymes further point to the importance of oxidant burden in the fibrotic lung.
40

Characterization of Interaction Between Brevetoxin and Its Native Receptor and Identification of the Role of Brevetoxin in Karenia brevis

Chen, Wei 07 November 2016 (has links)
Algae are important to marine and fresh-water ecosystems. However, some species of algae are harmful or even toxic. They can consume oxygen or block sunlight that is essential for other organisms to live. Indeed, some algae blooms can produce toxins that damage the health of the environment, plants, animals, and humans. Harmful algal blooms (HABs) which are often more green, brown, or dark-colored than red have spread along the coastlines and in the surface waters of the United States. Therefore, scientists are making great efforts to study HABs in order to maintain human and ecosystem health. Karenia brevis, the major harmful algal bloom dinoflagellate of the Gulf of Mexico, plays a destructive role in the region. Karenia brevis, responsible for Florida red tide, is the principle HAB dinoflagellate in the Gulf of Mexico. K. brevis blooms can produce brevetoxin: ladder-shaped polyether (LSP) compounds, which can lead to adverse human health effects, like reduced respiratory function through inhalation exposure, or neurotoxic shellfish poisoning through consumption of contaminated shellfish. The poisoning has been attributed to their affinity for voltage-sensitive sodium ion channels causing channel opening and depolarization of excitable cell membranes. Conservative estimate suggests that the economic impact from all harmful algal bloom events in the United States is at least $82 million/year. The public health costs occupy $37 million alone. The study presented herein utilized fluorescent and photolabile brevetoxin probes to demonstrate that brevetoxin localizes in the chloroplast of K. brevis where it binds to light harvest complex II (LHC II) and thioredoxin (Trx). It had been discovered that the TrxR/Trx system was inhibited by brevetoxin-2 (PbTx-2) with an IC50 of 25 µM. The mechanism of the inhibition was discussed in this work. The research also revealed that the K. brevis high-toxic and low-toxic strains have a significant difference in their ability, not only to produce brevetoxin, but also to perform NPQ and in the production of ROS. I compared and contrasted various metabolic and biochemical parameters in two strains of K. brevis which had a ten-fold difference in toxin content. The work could shed light on the physiological role that brevetoxin fills for K. brevis and may contribute to understanding the effect of ladder-shaped polyether compounds on both marine animals and exposed humans and shall inform improved treatments for brevetoxicosis.

Page generated in 0.0436 seconds