• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Runtime Detection of a Bandwidth Denial Attack from a Rogue Network-on-Chip

JayashankaraShridevi, Rajesh 01 May 2015 (has links)
Chips with high computational power are the crux of today’s pervasive complex digital systems. Microprocessor circuits are evolving towards many core designs with the integration of hundreds of processing cores, memory elements and other devices on a single chip to sustain high performance computing while maintaining low design costs. Two decisive paradigm shifts in the semiconductor industry have made this evolution possible: (a) architectural and (b) organizational. At the heart of the architectural innovation is a scalable high speed data communication structure, the network-on-chip (NoC). NoC is an interconnect network for the glueless integration of on-chip components in the modern complex communication centric designs. In the recent days, NoC has replaced the traditional bus based architecture owing to its structured and modular design, scalability and low design cost. The organizational revolution has resulted in a globalized and collaborative supply chain with pervasive use of third party intellectual properties to reduce the time-to-market and overall design costs. Despite the advantages of these paradigm shifts, modern system-on-chips pose a plethora of security vulnerabilities. This work explores a threat model arising from a malicious NoC IP embedded with a hardware trojan affecting the resource availability of on-chip components. A rigorous simulation infrastructure is established to evaluate the feasibility and potency of such an attack. Further, a non-invasive runtime monitoring technique is proposed and thoroughly investigated to ensure the trustworthiness of a third party NoC IP with low overheads.
2

Testing and Verification Strategies for Enhancing Trust in Third Party IPs

Banga, Mainak 17 December 2010 (has links)
Globalization in semiconductor industry has surged up the trend of outsourcing component design and manufacturing process across geographical boundaries. While cost reduction and short time to market are the driving factors behind this trend, the authenticity of the final product remains a major question. Third party deliverables are solely based on mutual trust and any manufacturer with a malicious intent can fiddle with the original design to make it work otherwise than expected in certain specific situations. In case such a backfire happens, the consequences can be disastrous especially for mission critical systems such as space-explorations, defense equipments such as missiles, life saving equipments such as medical gadgets where a single failure can translate to a loss of lives or millions of dollars. Thus accompanied with outsourcing, comes the question of trustworthy design - "how to ensure that integrity of the product manufactured by a third party has not been compromised". This dissertation aims towards developing verification methodologies and implementing non-destructive testing strategies to ensure the authenticity of a third party IP. This can be accomplished at various levels in the IC product life cycle. At the design stage, special testability features can be incorporated in the circuit to enhance its overall testability thereby making the otherwise hard to test portions of the design testable at the post silicon stage. We propose two different approaches to enhance the testability of the overall circuit. The first allows improved at-speed testing for the design while the second aims to exaggerate the effect of unwanted tampering (if present) on the IC. At the verification level, techniques like sequential equivalence checking can be employed to compare the third-party IP against a genuine specification and filter out components showing any deviation from the intended behavior. At the post silicon stage power discrepancies beyond a certain threshold between two otherwise identical ICs can indicate the presence of a malicious insertion in one of them. We have addressed all of them in this dissertation and suggested techniques that can be employed at each stage. Our experiments show promising results for detecting such alterations/insertions in the original design. / Ph. D.

Page generated in 0.049 seconds