• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thomsoneffectbepalingen in ijzer bij verschillende temperaturen ...

Aalderink, Arend. January 1910 (has links)
Proefschrift--Groningen. / Contains also Sur le phénomène de Thomson dans le mercure, par C. Schoute.
2

Stimulated Thomson scattering

Spencer, Ross Loren. January 1900 (has links)
Thesis--University of Wisconsin--Madison. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 134-137).
3

Thomsoneffectbepalingen in ijzer bij verschillende temperaturen ...

Aalderink, Arend. January 1910 (has links)
Proefschrift--Groningen. / Contains also Sur le phénomène de Thomson dans le mercure, par C. Schoute.
4

Isothermal changes in enthalpy from Joule-Thomson measurements

Duckworth, William Capell 08 1900 (has links)
No description available.
5

The gas-solid Joule-Thomson effect

Rybolt, Thomas Roy 08 1900 (has links)
No description available.
6

A study of the generalized behavior of nitrogen for compressibility, Joule-Thomson coefficients and enthalpy deviations

Mashallah, Aga, January 1970 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1971. / eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
7

Comprehensive Modeling of Novel Thermal Systems: Investigation of Cascaded Thermoelectrics and Bio-Inspired Thermal Protection Systems Performance

Kanimba, Eurydice 04 December 2019 (has links)
Thermal systems involve multiple components assembled to store or transfer heat for power, cooling, or insulation purpose, and this research focuses on modeling the performance of two novel thermal systems that are capable of functioning in environments subjected to high heat fluxes. The first investigated thermal system is a cascaded thermoelectric generator (TEG) that directly converts heat into electricity and offers a green option for renewable energy generation. The presented cascaded TEG allows harvesting energy in high temperatures ranging from 473K to 973K, and being a solid-state device with no moving parts constitutes an excellent feature for increase device life cycle and minimum maintenance in harsh, remote environments. Two cascaded TEG designs are analyzed in this research: the two-stage and three-stage cascaded TEGs, and based on the findings, the two-stage cascaded TEG produces a power output of 42 W with an efficiency of 8.3% while the three-cascaded TEG produces 51 W with an efficiency of 10.2%. The second investigated novel thermal system is a thermal protection system inspired by the porous internal skeleton of the cuttlefish also known as cuttlebone. The presented bio- inspired thermal protection has excellent features to serve as an integrated thermal protection system for spacecraft vehicles including being lightweight (93% porosity) and possessing high compressive strength. A large amount of heat flux is generated from friction between air and spacecraft vehicle exterior, especially during reentry into the atmosphere, and part of the herein presented research involves a thermomechanical modeling analysis of the cuttlebone bio-inspired integrated thermal protection system along with comparing its performance with three conventional structures such as the wavy, the pyramid, and cylindrical pin structures. The results suggest that the cuttlebone integrated thermal protection system excels the best at resisting deformation caused by thermal expansion when subjected to aerodynamic heat fluxes. / Doctor of Philosophy / Operating engineering systems in extremely hot environments often decreases systems' reliability, life cycle, and creates premature failure. This research investigates two novel thermal systems capable of functioning in high temperatures including a cascaded thermoelectric generator (TEG) and a bio-inspired thermal protection system. The first evaluated novel thermal systems is a cascaded TEG that directly converts waste heat into power, and being a solid-state device with no moving parts forms an excellent feature for device life cycle improvement and minimum maintenance in harsh, remote environments. The research findings show that the designed cascaded TEGs can produce power when subjected to high temperatures ranging from 473K to 973K. The remaining part of the research presented in this dissertation models the thermomechanical performance of a lightweight structure, which is inspired by the internal skeleton of the cuttlefish, also knows as the cuttlebone. The cuttlefish's natural ability to support high-deep sea pressure translates into possessing high compressive strength, and when added the fact of being lightweight (up to 93% porosity), the cuttlebone forms an excellent candidate to serve as integrated thermal protection for spacecraft vehicles. The last part of the presented research discuss the thermomechanical analysis of the cuttlebone when subjected to high aerodynamics heat flux generated from friction between the air and spacecraft vehicle exterior, and it was found that the cuttlebone structure resists deformation associated with the steep temperature gradient experienced by the spacecraft vehicle during travel.
8

Artificial Anisotropy for Transverse Thermoelectric Heat Flux Sensing

Derryberry, Rebekah Ann 24 April 2007 (has links)
Thermoelectric phenomenon describes the relationship between the flow of heat and electricity. Two main categories encompassed in thermoelectric theory are the Seebeck and Peltier effects. The Seebeck effect is the generation of a voltage in a device that consists of two different materials in the presence of a temperature gradient, while the Peltier effect is the generation of a temperature gradient across a device of two different materials in the presence of an electrical current. This project focuses on the first of these two phenomena, where the Seebeck effect is used in a novel heat flux sensor that is transverse in nature. Transverse thermoelectric devices are characterized by their anisotropy, meaning that a temperature gradient generated across a device will be perpendicular to the flow of electricity through the device. This orthogonal arrangement allows for the manipulation of material properties, device arrangement, and construction methods for device optimization. This project characterizes the heat flux sensing capabilities of an artificially anisotropic transverse thermoelectric device via experimental and theoretical methods. The device tested is constructed out of bismuth telluride and titanium grade 5. Bismuth telluride is a standard thermoelectric material, while the titanium is used because of its high melting point and good electrical conductivity. The device is constructed by alternating rectangular pieces of these two materials. These pieces are bonded together at a given angle to simulate anisotropy. Several devices are constructed in a range of angles from 59 to 88°. These devices are each tested in a vacuum chamber where a heater heats one side of the device. This heat flux into the device creates a temperature gradient across the device and the device generates a voltage perpendicular to this temperature gradient. Steady state data are collected for both the temperature difference between the two sides of the device and the voltage generated by the device. This procedure is repeated on each device for a range of heat fluxes from 0 to 2.6 W/cm². This range generates voltage signals up to 14341 µV for an angle of 59°. Data collected are then used to generate a linear trend line that describes the devices response to a given heat flux. These experimental results are compared to theoretical predictions using thermoelectric theory. The results indicate that the device does exhibit transverse thermoelectric characteristics and the experimental data follow the predicted trends. This thesis documents the process of constructing, testing, and analyzing this device. / Master of Science
9

Microstructure Evolution In Semisolid Processing

Apoorva, * 08 1900 (has links) (PDF)
In this thesis, we present an experimental and numerical study of globularization during reheating of thixocast billet having non-dendritic microstructure. The process of reheating is an important step in the semisolid processing and is essential to control its microstructure and hence its mechanical properties. Material chosen for this study is Aluminum alloy, A356. The primary focus of this study is the heat treatment below eutectic temperature i.e. transformation in solid phase. It is found that during short duration heat treatment, globularization of primary α grains and spheroidization of eutectic Si flakes take place which improves the mechanical properties of semisolid cast products significantly. A prolonged heat treatment is found to degrade the properties of castings since it enhances the porosity and coarsening of Si. The study suggests that a precise heat treatment practice can be designed to improve the semisolid microstructure. A computational model based on Phase field approach has been proposed to study this phenomena. Predictions based on this model are qualitatively compared with corresponding experimental observations. Since eutectics form an important step in multiphase solidification, an attempt has been made to develop an enthalpy based explicit micro-scale model for eutectic solidification. In this preliminary study, growth of adjacent α and β phases in a two dimensional Eulerian framework has been simulated. The model is qualitatively validated with Jackson Hunt theory. Results show expected eutectic growth. This methodology promises significant saving in computational time compared to existing numerical models.

Page generated in 0.045 seconds