• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation globale et régionale de la dynamique de population du thon obèse de l'océan Indien avec le modèle SEAPODYM / Modelling global and regional population dynamics of Indian ocean bigeye tuna using SEAPODYM

Wibawa, Teja Arief 17 March 2017 (has links)
La pêche au thon indonésienne a souffert d'un problème de gestion dû à des statistiques de pêche incomplètes et peu fiabilité, ce qui entraîne un manque de compréhension de la dynamique des populations de thonidés de la région. Le gouvernement de l'Indonésie a lancé un programme de développement de l'infrastructure pour l'océanographie spatiale (INDESO) afin d'aider à la gestion et au suivi des ressources marines du pays. Une application du projet concerne les pêcheries thonières avec l'objectif ambitieux de modéliser en temps réel et avec des prévisions de quelques jours les distributions et abondances de trois espèces de thonidés: thon obèse, albacore et bonite. Le modèle utilisé est SEAPODYM (modèle spatial d'écosystème et de dynamique de population). La présente thèse traite uniquement du thon obèse et a trois objectifs majeurs: la préparation d'un ensemble de données de pêche géoréférencées, la production de conditions initiales pour la configuration du modèle régional INDESO et la simulation de la dynamique régionale des populations. L'ensemble de données sur les captures et les efforts de pêche géoréférencés du thon obèse de l'océan Indien a été standardisé selon cinq procédures: standardisation de la résolution spatiale, conversion et standardisation des unités de capture et d'effort, recalage des captures géo-référencées au niveau des captures nominales, et détection des principaux changements de capturabilité sur de longues séries temporelles de données sur la pêche.. L'ensemble de données de prises géoréférencées standardisées couvre les deux tiers de la capture nominale totale en raison du manque de références géographiques pour plusieurs flottilles de pêche. Le modèle régional a été configuré en trois étapes: paramétrage du modèle à résolution grossière sur une longue période historique, " downscaling " et paramétrage de la configuration globale opérationnelle et " downscaling " vers le modèle régional opérationnel. La première étape a permis de paramétrer le modèle sur le Pacifique puis l'Océan Indien sur une période de trente-neuf ans à une résolution mensuelle de 2°, permettant d'établir les conditions initiales de la population pour la deuxième configuration, à partir de 1998 et à une résolution hebdomadaire 1/4°. Cette deuxième configuration du modèle a nécessité une méthode de " downscaling " pour réviser le paramétrage et obtenir la même solution malgré quelques différences dans le forçage physique. Ce modèle opérationnel global a ensuite fourni des conditions initiales de la population et des conditions aux frontières ouvertes pour les flux de poissons traversant les frontières régionales du modèle INDESO (1/12 ° de résolution quotidienne). L'ensemble des données de pêche standardisées dans l'océan Indien a été utilisé pour inclure la mortalité par pêche et valider l'optimisation réalisée dans l'océan Pacifique. Les résultats des simulations de modèles suggèrent que le thon obèse est distribué en concentration plus élevée dans l'océan Indien Nord (au nord de 20 °S), avec une extension à travers le canal du Mozambique et le long d'un prolongement vers l'est entre 35 ° et 40 ° S. Les configurations du modèle opérationnel (mondial et régional) utilisent la production primaire nette (VGPM) et la profondeur euphotique dérivées des données satellitaires, ainsi que les cartes mensuelles climatologiques de l'oxygène dissous provenant de l'Atlas Mondial des Océans (WOA) comme forçages biogéochimiques. Une simulation régionale utilisant le modèle INDESO biogéochimique PISCES comme forçage alternatif aux produits dérivés des satellites a été testée. Les résultats préliminaires montrent que, une fois la production primaire PISCES ajustée à la valeur moyenne VGPM, les deux produits donnent des résultats similaires, ce qui suggère que des prévisions à plus long terme basées sur le modèle biogéochimique physique couplé peuvent être proposées. / The Indonesian tuna fishery has suffered from a management problem due to incomplete and less reliability of tuna data leading to lack of understanding about tuna population dynamics in its region. The government of Indonesia initiated the Infrastructure Development of Space Oceanography (INDESO) programme to support marine resource management and monitoring of the Country. One application concerns the tuna fisheries with a challenging objective of real-time and forecast modeling of three tuna species biomass distributions: bigeye, yellowfin and skipjack. The model used is SEAPODYM (Spatial Ecosystem and Population Dynamics Model). The present thesis is dealing with bigeye tuna only, and had three major objectives: the preparation of a geo-referenced fishing dataset, the production of initial conditions for the regional INDESO model configuration, and the simulation of regional population dynamics. The georeferenced fishing catch and effort dataset of the Indian Ocean bigeye tuna was standardized throughout five procedures: standardization of spatial resolution, conversion and standardization of catch and effort units, raising of geo-referenced catch to nominal catch level, screening and correction of outliers, and detection of major catchability changes over long time series of fishing data. . The standardized geo-referenced catch dataset covers two-third of total nominal catch due to lack of geographic references for several fishing fleets. The regional model was configured along three steps: the parameterization of coarse resolution model over a long historical period, the downscaling and parameterization of operational global configuration, and the downscaling to the operational regional model. The first step provided model parameterization over the Pacific and Indian Ocean for thirty-nine years period at 2° monthly resolution, allowing to establish initial conditions of the population for the second configuration starting in 1998 at resolution 1/4° weekly. This second model configuration required a downscaling method to revise the parameterization and achieve the same solution despite some differences in the physical forcing. This global operational model provided initial conditions of the population and open boundary conditions (OBCs) constraining the fluxes of fish through the regional borders of INDESO model (1/12° daily resolution). The standardized Indian Ocean fishing dataset was used for including fishing mortality and validate the optimization achieved in the Pacific Ocean. Model simulation outputs suggest that bigeye is distributed in higher concentration in the North Indian Ocean (north of 20°S), with an extension through the Mozambique Channel and along an eastward prolongation between 35° and 40°S.. The operational model configurations (global and regional) are using VGPM net primary production and euphotic depth derived from satellite data, and climatological dissolved oxygen monthly maps from the World Ocean Atlas (WOA) as biogeochemical forcings. A regional simulation using the INDESO biogeochemical PISCES model forcing as an alternative to the satellite derived products was tested. The preliminary results show that once the PISCES primary production is scaled to the VGPM mean value, both products provide similar results, suggesting that longer time scale forecast based on the coupled physical biogeochemical model can be proposed.
2

Développement d'une méthode méthodologie de PCR en temps réel pour l'identification et la quantification de trois espèces de thon (Thunnus obesus, Thunnus albacares et Katsuwonus pelamis) dans les produits appertisés / Development of a methodology of PCR in real time for identification and quantification of 3 species of tuna (Thunnus obesus, Thunnus albacares and Katsuwonus pelamis) in canned products

Bojolly, Daline 29 March 2017 (has links)
Le thon obèse (Thunnus obesus), le thon alabore (Thunnus albacares) et le listao (Katsuwonus pelamis) comptent parmi les espèces de thons les plus utilisées en conserve. Lors de la fabrication de conserves de thon, la substitution d'espèce et/ou le mélange de différentes espèces de thon sont interdits par la réglementation européenne. L'authentification des espèces de thon reste complexe à cause du degré de similitude élevé entre les espèces de thon, ou encore, lorsque les caractéristiques morphologiques externes sont éliminées au cours du filetage et lors de la mise en conserve. Par conséquent, des substitutions involontaires ou frauduleuses peuvent se produire. Dans cette étude, le marqueur mitochondrial du gène de la sous-unité 2 de la NADH déshydrogénase a été utilisé pour identifier le thon obèse et le gène de la sous-unité II de la cytochrome c oxydase a été utilisé pour identifier le thon albacore et le listao en utilisant la PCR en temps réel basée sur la technologie TaqMan. Deux méthodes différentes basées sur la qPCR ont été développées pour quantifier le pourcentage de chair de chaque espèce présente au sein d'une boîte de thon. La première a été basée sur la quantification absolue avec standard externe réalisée avec les deux marqueurs. La seconde a été basée sur la quantification relative avec standard externe avec le gène endogène de l'ARN 12S. Sur la base de ces résultats, nous pouvons conclure que notre méthode peut s'appliquer pour quantifier les deux espèces de thon albacore et obèse génétiquement très proches lorsqu'elles sont utilisées dans un mélange binaire en conserve. / Bigeye tuna (Thunnus obesus), yellowfin tuna (Thunnus albacares) and skipjack tuna (Katsuwonus pelanis) are among the most widely used tuna species for canning purposes. Not only substitution but also mixing of tuna species is prohibited by the European regulation for canned tuna products. However, it can be difficult to authenticate the tuna species, due to their high degree of similarity or even when the external morphological characteristics are removed due to filleting before canning. Consequently, involuntary or fraudulent substitutions may occur during the canning process. In this study, the mitochondrial marker from NADH dehydrogenase subunit 2 gene was used to identify bigeye tuna and the mitochondrial marker cytochrome c oxidase subunit II gene was used to identify yellowfin tuna and skipjack tuna, utilizing TaqMan qPCR methodology. Two different qPCR-based methods were developed to quantify the percentage of flesh of each species used for can processing. The first one was based on absolute quantification using standard curves realized with these two markers ; the second one was founded on relative quantification with the universal 12S rRNA gene as the endogenous gene. On the basis of our results, we conclude that our methodology could be applied to authenticate the two closely related tuna species (bigeye tuna and yellowfin tuna) when used in a binary mix in tuna cans.

Page generated in 0.052 seconds