• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1412
  • 616
  • 202
  • 169
  • 106
  • 96
  • 84
  • 75
  • 62
  • 55
  • 32
  • 27
  • 20
  • 17
  • 10
  • Tagged with
  • 3392
  • 1665
  • 530
  • 350
  • 343
  • 324
  • 298
  • 297
  • 269
  • 243
  • 204
  • 192
  • 166
  • 162
  • 155
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
671

Three-dimensional fluid flow structures and heat transfer characteristics of a backward-facing step flow in a rectangular duct / ダクト内バックステップ流れの三次元流動と熱伝達特性 / ダクトナイ バック ステップ ナガレ ノ サンジゲン リュウドウ ト ネツデンタツ トクセイ

邹 帅, Shuai Zou 22 March 2021 (has links)
Flow with separation and reattachment has been encountered in many thermo-fluidic devices. Although it causes energy loss due to pressure drops, it is sometimes intentionally used for heat transfer enhancement. To improve the performance of heat exchangers, understanding the details of such complicated flow and thermal structures is very important. Therefore, attention was paid in this study to a representative typical simple model that can generate separating and reattaching flow called backward-facing step (BFS) flow, the fundamental flow and thermal characteristics of a 3-D BFS flow have been investigated experimentally and a flow modification was also made by numerical simulation aimed to promote the heat transfer enhancement. / 博士(工学) / Doctor of Philosophy in Engineering / 同志社大学 / Doshisha University
672

A 2D PLUS DEPTH VIDEO CAMERA PROTOTYPE USING DEPTH FROM DEFOCUS IMAGING AND A SINGLE MICROFLUIDIC LENS

Li, Weixu 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / A new method for capturing 3D video from a single imager and lens is introduced in this research. The benefit of this method is that it does not have the calibration and alignment issues associated with binocular 3D video cameras, and allows for a less expensive overall system. The digital imaging technique Depth from Defocus (DfD) has been successfully used in still camera imaging to develop a depth map associated with the image. However, DfD has not been applied in real-time video so far since the focus mechanisms are too slow to produce real-time results. This new research result shows that a Microfluidic lens is capable of the required focal length changes at 2x video frame rate, due to the electrostatic control of the focus. During the processing, two focus settings per output frame are captured using this lens combined with a broadcast video camera prototype. We show that the DfD technique using Bayesian Markov Random Field optimization can produce a valid depth map.
673

Investigating Mechanical Strain-Induced Phenotypic Changes on Prostate Cancer Cell Toward Metastasis Using a Three-Dimensional <i>In-Vitro</i> Model

Ditto, Maggie J. 14 June 2013 (has links)
No description available.
674

Ancient Maya Diet in the Three Rivers Region of Northwest Belize

Knisely, Denise E. 14 October 2013 (has links)
No description available.
675

Silicon Carbide NEMS Logic and Memory for Computation at Extreme: Device Design and Analysis

Ranganathan, Vaishnavi 23 August 2013 (has links)
No description available.
676

Three Dimensional Modeling of Hard Connective Tissues Using a Laser Displacement Sensor

Kanabar, Prachi 02 September 2008 (has links)
No description available.
677

A Comparative Study for the Effect of Tissure Anisotropy on the Behavior of a Single Cardiac Pressure Cycle for a Symmetric Tri-Leaflet Valve

Thomas, Vineet Sunny 13 December 2010 (has links)
No description available.
678

Scaling Up the Synthesis of Three-Dimensional (3D) Graphene for Advanced Applications

DeArmond, Derek 23 August 2022 (has links)
No description available.
679

Effects Of 3d Stereoscopy, Visuo-spatial Working Memory, And Perceptions Of Simulation Experience On The Memorization Of Confusable Objects

Keebler, Joseph R 01 January 2011 (has links)
This dissertation investigated the impact of active stereoscopic 3-dimensional (3D) imagery equipment and individual differences in visuo-spatial working memory (VSWM) capacity on retention of a set of similar, novel objects (i.e., armored military vehicles). Seventy-one participants were assessed on their visuo-spatial working memory using the Visual Patterns Test (Della Sala, Gray, Baddeley, & Wilson, 1997). They were then assigned to one of four different conditions (3D high VSWM, 3D low VSWM, 2D high VSWM, 2D low VSWM) based upon their visuo-spatial working memory. Participants were then trained to identify military vehicles using a simulation that presented the training stimuli in one of two dimensionalities, i.e. two dimensional (2D) or active stereoscopic three-dimensional (3D). Testing consisted of a vehicle memory training assessment, which challenged participants to choose the correct components of each vehicle immediately after studying; a measure of retention for military vehicles which asked participants to categorize the alliance and identify previously studied vehicles; and a transfer measure using video footage of actual military vehicles. The latter measures depicted military vehicles in an array of combat situations, and participants were asked to decide on whether or not to shoot each vehicle, as well as identify the vehicles. Testing occurred immediately after training. The moderating, as well as main effects, of VSWM were assessed. The mediating/moderating effects of several experiential factors were measured as well, including: immersion, presence, engagement, flow state, and technology acceptance. Findings indicate that perceptions of the simulation experience and VSWM are strong positive predictors of performance, while 3D was not predictive, and in some instances, significantly worse than the 2D condition. These findings indicate that individual differences in visual memory and user experiences during the SBT both are predictive factors in memory tasks iv for confusable objects. The SBT designed in this study also led to robust prediction of training outcomes on the final transfer task.
680

Effects Of Position, Orientation, And Infiltrating Material On Three Dimensional Printing Models

Frascati, Joseph William 01 January 2007 (has links)
This research defined and evaluated mechanical properties of prototypes created using a plaster based three-dimensional printing (3DP) system commercialized by Z Corporation. 3DP is one of the fastest growing forms of rapid prototyping. Till date, there is little or no information available on material properties of infiltrants used in 3DP. This research work evaluated and documented some of the useful information for 3DP users by determining the effect of build position, build orientation and infiltration materials on the strength of prototypes. The study was performed in three different phases to limit the processing variables and to arrive at definite conclusions on relationship between materials properties and process variables. All specimens were built on the Z Corporation Spectrum Z510. In Phase 1, effects of build location on specimen strength was studied. Phase 2 evaluated the influence of build orientation on specimen strength. System Three Clear Coat epoxy was used during both Phase 1 and 2 for infiltration. The same infiltrant was in both of these phases to limit variables. Using results of Phase 1 & 2, the effects of infiltrant material on tensile strength of prototypes was calculated in Phase 3. Seven different infiltrating materials were tested during Phase 3. These materials included 2 cyanoacrylates and 5 epoxies. The tensile strength, flexural strength, and density and porosity of the specimens were determined and correlated. In each phase six specimens were built for each test performed. Two consistent methods of infiltration were utilized to infiltrate cyanoacrylates and epoxies into the as-processed specimens. It was found that the orientation of the specimen has more of an impact on strength than position within the build platform. The layering build process of rapid prototyping creates a variance in strength depending on the build orientation. Specimens infiltrated with epoxy achieved much higher strength than the specimens infiltrated with cyanoacrylate. Cyanoacrylates may be a good choice in making color concept models; however they are not good candidate materials where strength requirement is important. The epoxies with lower viscosities demonstrated higher part strength among the materials tested.

Page generated in 0.0396 seconds