• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the effective number of tracked trajectories in normal human vision.

Tripathy, Srimant P., Narasimhan, Sathyasri, Barrett, Brendan T. January 2007 (has links)
No / Z. W. Pylyshyn and R. W. Storm (1988) have shown that human observers can accurately track four to five items at a time. However, when a threshold paradigm is used, observers are unable to track more than a single trajectory accurately (S. P. Tripathy & B. T. Barrett, 2004). This difference between the two studies is examined systematically using substantially suprathreshold stimuli. The stimuli consisted of one (Experiment 1) or more (Experiments 2 and 3) bilinear target trajectories embedded among several linear distractor trajectories. The target trajectories deviated clockwise (CW) or counterclockwise (CCW) (by 19°, 38°, or 76° in Experiments 1 and 2 and by 19°, 38°, or 57° in Experiment 3), and observers reported the direction of deviation. From the percentage of correct responses, the ¿effective¿ number of tracked trajectories was estimated for each experimental condition. The total number of trajectories in the stimulus and the number of deviating trajectories had only a small effect on the effective number of tracked trajectories; the effective number tracked was primarily influenced by the angle of deviation of the targets and ranged from four to five trajectories for a ±76° deviation to only one to two trajectories for a ±19° deviation, regardless of whether the different magnitudes of deviation were blocked (Experiment 2) or interleaved (Experiment 3). Simple hypotheses based on ¿averaging of orientations,¿ ¿preallocation of resources,¿ or pop-out, crowding, or masking of the target trajectories are unlikely to explain the relationship between the effective number tracked and the angle of deviation of the target trajectories. This study reconciles the difference between the studies cited above in terms of the number of trajectories that can be tracked at a time.

Page generated in 0.0625 seconds