• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 9
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Direct digital control of a thyristor converter

Fraser, Kenneth L January 1977 (has links)
Note:
2

Die ontwikkeling en eienskappe van 'n tiristorbeheerde reaktiewe driefase netwerk

Vermooten, Dan 10 April 2014 (has links)
M.Ing. / This dissertation describes the development and characteristics of a thyristor controlled reactive three phase network which is used for the compensation of reactive power in a power network. The problem of distortion in power networks is illustrated and the development of a thyristor controlled reactive three phase network is motivated. The considerations that were taken into account in the design of the network are explained and the experimental setup is evaluated. A computer simulation was done to verify a single phase model of the reactive power network. The driving function in power networks is a singular harmonic voltage and distortion is defined as any deviation ofthe current from a scaled, in phase version of the voltage. Distortion is caused byloads with a non-linear nature such as arc furnaces and variable speed drives. Reactive power, which forms part of the distortion problem, is caused by loads with a phase shift between the voltage and current. Distortion has several adverse effects on a power network resulting in the degrading of the quality of the supply. At present the state of the art in technology does not permit the economic compensation of distortion with dynamic filters at MVA levels. However, by compensating the reactive power present in a network byusing variable reactive elements, the remaining distortion in the network can be compensated by using a dynamic filter. The combination ofa thyristor controlled reactive network and a dynamic filter are termed a hybrid power compensator. Results are shown where a hybrid power compensator has been implimented to compensate distortion caused by a non-linear load. The thyristor controlled reactive three phase network described in this dissertation is rated at 21 kVAr and comprises the following on a per phase basis: The series combination of a fixed capacitor bank and a filter inductance is connected via an isolation transformer to a reactor and two anti parallel thyristors. The reactive elements have been dimensioned in such a way that reactive power can only be generated and not absorbed.
3

Drywingselektroniese mutators met siklies-resonante gapsers en hekafskakelbare tiristors

Deacon, Johan Abraham 29 September 2014 (has links)
M.Ing. (Electrical & Electronic Engineering) / The gate turn-off thyristor is discussed as a power switch. A gate-firing circuit for gate turn-off thyristors in the range 10 A - 300 A was developed. The resonant dc-link as snubber for voltage fed inverters is discussed. On considering various factors, the gate turn-off thyristor was chosen as switching component in the inverter. The problems that deve16ped with the use of gate turn-off thyristors in resonant dc-link inverters w,re discussed. Which lead to the development of a storage time compensator for gate turn-off thyristors. Attention was given to the various possible control methods for the resonant dc-link. A study of the possible control strategies results in the development and manufacturing of both a single-phase and a three-phase controller. The operation of the resonant inverter and inverter/load system were evaluated in terms of wave shapes in the time domain.
4

Robust decentralized control of power systems through excitation systems and thyristor controlled series capacitors

Fan, Lingling, January 2001 (has links)
Thesis (Ph. D.)--West Virginia University, 2001. / Title from document title page. Document formatted into pages; contains x, 121 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 99-103).
5

A current limit control for a chopper-fed D-C motor by using a KIM-1 microcomputer

Shih, Chih-Shyong January 2011 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries
6

Control and operation of high-performance thyristor-controlled-reactor(TCR) compensators

何沛德, Ho, Pui-tak. January 1988 (has links)
published_or_final_version / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
7

Study of microprocessor application to thyristor phase-controlled excitation systems /

Ho, Pui-tak. January 1980 (has links)
Thesis--M. Phil., University of Hong Kong.
8

Study of microprocessor application to thyristor phase-controlled excitation systems

何沛德, Ho, Pui-tak. January 1980 (has links)
published_or_final_version / Electrical and Electronic Engineering / Master / Master of Philosophy
9

Current impulse displacement thyristor commutation /

Williams, Barry Wayne. January 1978 (has links) (PDF)
Thesis (M.Eng.Sc. 1979) from the Department of Electrical Engineering, University of Adelaide.
10

A DSP-based digital controller for a thyristor controlled series capacitor

Pillay, Anand. January 2007 (has links)
The power transfer capability of long high voltage transmission lines is often limited by the inductive reactance of the transmission line. Series compensation is in some instances employed to lower the inductive reactance of the transmission line which increases the transmission line power transfer capability. Numerous methods have been employed to provide series compensation of a transmission line. One such method is to use a thyristor controlled series capacitor (TCSC). A thyristor controlled senes capacitor (TCSC) belongs to the flexible altemating CUlTent transmission systems (FACTS) family of devices. It is a variable capacitive and inductive reactance device that can be used to provide series compensation in high voltage transmission lines. One of the significant advantages that a TCSC has over other series compensation devices is that the TCSC's reactance is instantaneously and continuously variable. This means that the TCSC can be used not only to provide series compensation but can also be used to enhance the stability of the power system. However accurate control of the TCSC is challenging due to its highly non-linear variable reactance characteristic. The TCSC consists of back to back thyristors that control the reactance of the TCSC. By changing the trigger angle of these back to back thyristors it is possible to vary the reactance of the TCSC. The reactance characteristic becomes highly non linear at higher levels of compensation; at such operating points the trigger angle of the thyristors needs to be accurately controlled to avoid small variations in the thyristor trigger angle causing significant variation in the reactance of the TCSC. Literature has shown that there is an acceptable limit to the resolution of the thyristor trigger angle based on the parameters of the components used in the TCSC. If a controller is developed to meet this acceptable level of thyristor trigger angle resolution, then the operation of the TCSC will also be acceptable and its operation will not result in unwanted fluctuations in the transmission line variables. This thesis details the development of such a controller for use in a laboratory-scale TCSC. The thesis then goes on to present the practical results obtained from laboratory experiments on the laboratory-scale TCSC with the TCSC triggering controller being used to control the operation of the laboratory-scale TCSC. For purposes of comparison and benchmarking, a detailed simulation model of the laboratory-scale TCSC is developed to take into account the non-ideal properties of the components used in make-up of the laboratory-scale TCSC since the theoretical model is derived assuming ideal conditions. The detailed simulation model is also used to aid in the redesign the power circuit of the laboratory-scale TCSC in an attempt to improve the perfonnance of the laboratory-scale TCSC by obtaining better agreement between the theoretical and practical results. The redesigned laboratory-scale TCSC is used to obtain practical results to COnfill11 the findings of the simulation studies. Finally, the TCSC triggering controller is tested using a real time digital simulator (RTDS). The simulation model developed on the RTDS consisted of a two area, four generator power, with the TCSC connected between the two areas. The RTDS simulation model is used to study the ability of the TCSC to damp inter-area mode oscillations and hence the RTDS simulation model incorporated a power oscillation controller. The input of TCSC triggering controller was "connected" to the power oscillation damping controller and the output of the TCSC triggering controller was "connected" to the thyristors of the TCSC. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2007.

Page generated in 0.0851 seconds