• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Associations between Butylparaben and Thyroid Levels in Females Aged 12 and over (NHANES, 2007-2008)

Decker, Andrea H 09 January 2015 (has links)
Background: Paraben exposure occurs everyday to most people unknowingly. Parabens are present in most personal care products in varying amounts. Presently, parabens are not listed as endocrine disruptors; however, some research has shown parabens associated with decreases in thyroid hormone levels. The chemical and adsorption mechanism for parabens in association with thyroid hormones is not well understood. Determining whether parabens are associated with a change in thyroid hormone levels can help reduce the incidence of possible adverse health effects with exposure to parabens. Methodology: The selected study variables were analyzed using SAS version 9.2. Data were obtained from the 2007-2008 National Health and Nutrition Examination Survey (NHANES). Analyses were performed separately for adolescent females (12-19) and adult females (20+). Weighted means were performed for the main independent and dependent variables of interest stratified by race/ethnicity groups and by smoking status. Independent samples t-test and ANOVA was used to test significance of differences of weighted means. Weighted bivariate linear regression was performed for each dependent variable (Thyroid Stimulating Hormone [TSH], Triiodothyronine [T3], and Thyroxine [T4]) regressed on butylparaben. Weighted multiple linear regressions were performed and parameter estimates with 95% confidence intervals were used to ascertain the measure of effect. Separate regression models stratified by age group (adolescent vs. adult) were ran for each dependent variable (TSH, T3, and T4) regressed on butylparaben level and covariates, race/ethnicity and smoking status (ever smoked). Results: Weighted bivariate linear regression showed that among adult females, for each ng/ml increase in butylparaben, there was a -1.07 decrease in ng/dL T3 (p Weighted multiple linear regression showed higher butylparaben levels among adult females were associated with 0.12 ug/dL lower than average T4 levels (p Conclusion: While parabens are currently not considered endocrine disruptors, the human metabolism of and effects from exposure to parabens are not well understood. Results from this study showing decreased levels of some thyroid hormone levels (TSH, T3, and T4) associated with increased levels of butylparaben was found, as well as differences in thyroid hormone levels among racial/ethnic groups. Although not many human studies have found significant results, 10 some rodent studies have found butylparaben associations with thyroid hormone changes.4, 6, 19, 54 The results of this study indicating no statistically significant association between butylparaben and decreases in thyroid hormone levels are consistent with results of some rodent studies.7, 8, 54, 55 In light of these findings, additional human studies with paraben exposure and thyroid hormone levels are needed to increase knowledge of the mechanism and effect of parabens in the human body.
2

Biomimetic Studies On Anti-Thyroid Drugs And Thyroid Hormone Synthesis

Roy, Gouriprasanna 05 1900 (has links)
Thyroxine (T4), the main secretory hormone of the thyroid gland, is produced on thyroglobulin by thyroid peroxidase (TPO)/hydrogen peroxide/iodide system. The synthesis of T4 by TPO involves two independent steps: iodination of tyrosine and phenolic coupling of the resulting iodotyrosine residues. The prohormone T4 is then converted to its biologically active form T3 by a selenocysteine-containing iodothyronine deiodinase (ID-I), which is present in highest amounts in liver, kidney, thyroid and pituitary. The 5'-deiodination catalyzed by ID-I is a ping-pong, bisubstrate reaction in which the selenol (or selenolate) group of the enzyme (E-SeH or E-Se-) first reacts with thyroxine (T4) to form a selenenyl iodide (E-SeI) intermediate. Subsequent reaction of the selenenyl iodide with an as yet unidentified intracellular cofactor completes the catalytic cycle and regenerates the selenol. Although the deiodination reactions are essential for the function of thyroid gland, the activation of thyroid stimulating hormone (TSH) receptor by auto-antibodies leads to an overproduction of thyroid hormones. In addition, these antibodies stimulate ID-I and probably other deiodinases to produce relatively more amount of T3. Figure 1. Synthesis of thyroid hormones by heme-containing Thyroid Peroxidase(TPO)(Refer PDF File) As these antibodies are not under pituitary feedback control system, there is no negative influence on the thyroid activity and, therefore, the uncontrolled production of thyroid hormones leads to a condition called “hyperthyroidism”. Under these conditions, the overproduction of T4 and T3 can be controlled by specific inhibitors, which either block the thyroid hormone biosynthesis or reduce the conversion of T4 to T3. A unique class of such inhibitors is the thiourea drugs, methimazole (1, MMI), 6-n-propyl-2-thiouracil (3, PTU), and 6-methyl-2-thiouracil (5, MTU). Although these compounds are the most commonly employed drugs in the treatment of hyperthyroidism, the detailed mechanism of their action is still not clear. According to the initially proposed mechanism, these drugs may divert oxidized iodides away from thyroglobulin by forming stable electron donor-acceptor complexes with diiodine, which can effectively reduce the thyroid hormone biosynthesis. It has also been proposed that these drugs may block the thyroid hormone synthesis by coordinating to the metal center of thyroid peroxidase (TPO). After the discovery that the ID-I is responsible for the activation of thyroxine, it has been reported that PTU, but not MMI, reacts with the selenenyl iodide intermediate (E-SeI) of ID-I to form a selenenyl sulfide as a dead end product, thereby blocking the conversion of T4 to T3 during the monodeiodination reaction. The mechanism of anti-thyroid activity is further complicated by the fact that the gold-containing drugs such as gold thioglucose (GTG) inhibit the deiodinase activity by reacting with the selenol group of the native enzyme. Recently, the selenium analogues 2 (MSeI), 4 (PSeU) and 6 (MSeU) attracted considerable attention because these compounds are expected to be more nucleophilic than their sulfur analogues and the formation of an –Se–Se– bond may occur more readily than the formation of an –Se–S– bond with the ID-I enzyme. However, the data derived from the inhibition of TPO by selenium compounds show that these compounds may inhibit the TPO activity by a different mechanism. Therefore, further studies are required to understand the mechanism by which the selenium compounds exert their inhibitory action. Our initial attempts to isolate 2 were unsuccessful and the final stable compound in the synthesis was characterized to be the diselenide (8). In view of the current interest in anti-thyroid drugs and their mechanism, we extended our approach to the synthesis and biological activities of a number of sulfur and selenium derivatives bearing the methimazole pharmacophore. The thesis consists of five chapters. The first chapter gives a general introduction to thyroid hormone synthesis and anti-thyroid drugs. In this chapter, the biosynthesis of thyroid hormones, structure and function of heme peroxidases, activation of thyroid hormones by iodothyronine deiodinases are discussed. This chapter also gives a brief introduction to some common problems associated with the thyroid gland, with a particular emphasis on hyperthyroidism. The structure and activity of some commonly used anti-thyroid drugs and the role of selenium in thyroid are discussed. The literature references related to this work are provided at the end of the chapter. The second chapter deals with the synthesis and characterization of the selenium analogue (MSeI) of anti-thyroid drug methimazole and a series of organoselenium compounds bearing N-methylimidazole pharmacophore are described. The clinically employed anti-thyroid drug, methimazole (MMI), exists predominantly in its thione form, which is responsible for its anti-thyroidal activity. The selenium analogue MSeI, on the other hand, is not stable in air and spontaneously oxidizes to the corresponding diselenide (MSeIox). Experimental and theoretical studies on MSeI suggest that this compound exists in a zwitterionic form in which the selenium atom carries a large negative charge. The structure of MSeI was studied in solution by NMR spectroscopy and the 77Se NMR chemical shift shows a large upfield shift (-5 ppm) in the signal as compared to the true selones for which the signals normally appear in the downfield range (500-2500 ppm). This confirms that MSeI exists predominantly in its zwitterionic form in solution. Our theoretical studies show that the formation of the diselenide (MSeIox) from selenol tautomer is energetically more favored than the formation of the disulfide (MMIox) from the thiol tautomer of MMI. This study also shows that the replacement of the N−H group in MSeI by an N-methyl or N-benzyl substituent does not affect the nature of C−Se bond. In the third chapter, the inhibition of lactoperoxidase-catalyzed oxidation of ABTS by anti-thyroid drugs and related derivatives is described. The commonly used anti-thyroid agent methemazole (MMI) inhibits the lactoperoxidase (LPO) with an IC50 value of 7.0 µM which is much lower than that of the other two anti-thyroid drugs, PTU and MTU. The selenium analogue of methimazole (MSeI) also inhibits LPO with an IC50 value of 16.4 µM, which is about 4-5 times lower than that of PTU and MTU. In contrast to thiones and selones, the S- and Se-protected compounds do not show any noticeable inhibition under identical experimental conditions. While the inhibition of LPO by MMI cannot be reversed by increasing the hydrogen peroxide concentration, the inhibition by MSeI can be completely reversed by increasing the peroxide concentration. Some of the selenium compounds in the present study show interesting anti-oxidant activity in addition to their inhibition propertities. In the presence of glutathione (GSH), MSeI constitutes a redox cycle involving a catalytic reduction of H2O2 and thereby mimics the glutathione peroxidase (GPx) activity in vitro. These studies reveal that the degradation of the intracellular H2O2 by the selenium analogues of anti-thyroid drugs may be beneficial to the thyroid gland as these compounds may act as antioxidants and protect thyroid cells from oxidative damage. Because the drugs with an action essentially on H2O2 can reversibly inhibit thyroid peroxidase, such drugs with a more controlled action could be of great importance in the treatment of hyperthyroidism. Figure 2. (A) Concentration-inhibition curves for the inhibition of LPO-catalyzed oxidation of ABTS by MMI and MSeI at pH 7.0 and 30 °C. (B) Plot of initial rates (vo) for the LPO-catalyzed oxidation of ABTS vs concentration of H2O2. (a) Control activity, (b) 40 µM of MSeI, (c) 40 µM of MSeIox, (d) 80 µM of PTU, (e) 80 µM of MTU, (f) 40 µM of MMI. The incubation mixture contained 6.5 nM LPO, 1.4 mM ABTS, 0.067 M phosphatebuffer(pH7).(Refer PDF File) The fourth chapter describes the inhibition of lactoperoxidase (LPO)-catalyzed iodination of L-tyrosine by anti-thyroid drug methimazole (MMI) and its selenium analogue (MSeI). These inhibition studies show that MSeI inhibits LPO with an IC50 value of 12.4 µM, which is higher than that of MMI (5.2 µM). The effect of hydrogen peroxide on the inhibition of LPO by MMI and MSeI is also discussed. These studies also reveal that the inhibition of LPO-catalyzed iodination by MSeI can be completely reversed by increasing the peroxide concentration. On the other hand, the inhibition by MMI cannot be reversed by increasing the concentration of the peroxide. To under stand the nature of compounds formed in the reactions between anti-thyroid drugs and iodine, the reactions of MSeI with molecular iodine is described. MSeI reacts with I2 to produce novel ionic diselenides, and the nature of the species formed in this reaction appears to be solvent dependent. The formation of ionic species (mono and dications) in the reaction is confirmed by UV-Vis, FT-IR and FT-Raman spectroscopic investigations and single crystal x-ray studies. The major conclusion drawn from this study is that MSeI reacts with iodine, even in its oxidized form, to form ionic diselenides containing iodide or polyiodide anions, which might be possible intermediates in the inhibition of thyroid hormones. Dication X-ray crystal structure of the monocation X-ray crystal structure of the dication In the fifth chapter, the synthesis and characterization of several thiones and selones having N,N-disubstituted imidazole moiety are described. Experimental and theoretical studies were performed on a number of selones, which suggest that these compounds exist as zwitterions in which the selenium atom carries a large negative charge. The structures of selones were studied in solution by NMR spectroscopy and the 77Se NMR chemical shifts for the selones show large upfield shifts in the signals, confirming the zwitterionic structure of the selones in solution. The thermal isomerization of some S- and Se-substituted methyl and benzyl imidazole derivatives to produce the thermodynamically more stable N-substituted derivatives is described. A structure–activity correlation was attempted on the inhibition of LPO-catalyzed oxidation and iodination reactions by several thiouracil compounds, which indicates that the presence of an n-propyl group in PTU is important for an efficient inhibition. In contrast to the S- and Se-substituted derivatives, the selones produced by thermal isomerization exhibited efficient inhibition, indicating the importance of reactive selone (zwitterionic) moiety in the inhibition. The inhibition data on another well-known anti-thyroid agent carbimazole (CBZ) support the assumption that CBZ acts as a prodrug, requiring a conversion to methimazole (MMI) for its inhibitory action on thyroid peroxidase. (Refer pdf file/original thesis)
3

Interactions entre comportement et variations de la croissance des juvéniles de la sole (Solea solea) dans les nourriceries des pertuis Charentais.

Laffargue, Pascal 11 October 2004 (has links) (PDF)
L'objectif de cette thèse était d'identifier certains processus liés au fonctionnement des nourriceries de la<br />sole Solea solea (L.) dans les pertuis Charentais, bassin ostréicole de 1er rang européen et nourriceries majeures<br />pour la sole du golfe de Gascogne. Les juvéniles de la sole dépendent d'habitats côtiers et estuariens, ce qui<br />implique (i) une capacité d'adaptation à la variabilité environnementale de ces milieux et (ii), l'accès à l'intégralité<br />d'un habitat essentiel au cycle biologique de l'espèce. La nourricerie réalisée rend compte des ajustements que le<br />poisson doit opérer entre les contraintes liées à l'habitat et sa capacité à gérer ces contraintes, à travers la<br />sélection des aires de nourrissage, de repos et de refuge. Couplant travaux de terrains et expériences en<br />mésocosme, des méthodes basées sur des estimateurs intégratifs ont été retenues, taux de croissance, indice de<br />condition de Fulton et statut endocrine de ces poissons. Ces résultats ont été confrontés à une approche<br />comportementale visant à déterminer comment les soles utilisent l'espace (pistage par télémétrie acoustique) et<br />accèdent à la nourriture (régime alimentaire et estimation de la ration en équivalent carbone) dans un habitat sous<br />influence conchylicole.<br />La croissance des juvéniles du pertuis Breton, sub-maximale durant la période de croissance rapide, tend<br />vers un plateau autour de l'équinoxe d'automne. Une expérience en mésocosme confirme que la température in<br />situ ne peut entraîner ce ralentissement de la croissance. Or en même temps, ces juvéniles présentent une<br />condition médiocre, les niveaux d'hormones thyroïdiennes circulantes les plus faibles et l'activité alimentaire la plus<br />basse de l'année. Cet état suggère des contraintes propres à la mer des Pertuis, système de baies semi-fermées<br />sous influence modérée de panaches estuariens. Il semble qu'un environnement marin moins favorable en fin d'été<br />et/ou des effets en cascade sur le réseau trophique ne permettent pas à l'intégralité de la classe d'âge 0 d'y grandir<br />en fonction des potentialités de l'espèce. Dans le contexte climatique actuel néanmoins, une partie d'entre eux est<br />capable d'hiverner dans ces nourriceries où ils recouvrent des niveaux hormonaux élevés et restaurent leur activité<br />alimentaire. Les contraintes environnementales des pertuis Charentais, si elles sont d'ordre à moduler la<br />croissance des soles, ne semblent pas altérer leur comportement. Nous avons pu montrer par une expérience en<br />mésoscosme que ni l'effet des structures d'élevage, ni celui des modifications d'habitat liées à la biodéposition ne<br />restreignent l'accès aux zones placées sous emprises ostréicoles. Vérifier ces résultats en mer sera nécessaire<br />avant de conclure que les juvéniles accèdent à l'intégralité des nourriceries dans les pertuis Charentais. Toutefois,<br />deux cycles d'alimentation de 30 h dans le pertuis d'Antioche démontrent la capacité de très jeunes soles à ajuster<br />leurs rythmes d'activité et l'intensité de la prise alimentaire selon, vraisemblablement, le contexte hydrodynamique,<br />qu'il soit imposé par le cycle des marées de quinzaine ou par le vent. Cela a également permis une première<br />estimation de la ration journalière des jeunes soles en carbone organique, ce qui permettra de compléter les<br />modèles de réseau trophique actuellement développés. Enfin, l'infestation importante des soles des pertuis par les<br />métacercaires d'un Bucephalidae, enkystées dans différents organes sensibles, révèle des interactions biotiques<br />inattendues. Les cercaires de ce parasite étant propagées par les élevages de moules, cette parasitose donne un<br />nouvel éclairage aux interactions existant entre la fonction de nourricerie des habitats côtiers et la conchyliculture.
4

Halogen Bonding in the Structure and Biomimetic Dehalogenation of Thyroid Hormones and Halogenated Nucleosides

Mondal, Santanu January 2016 (has links) (PDF)
Thyroid hormones, which are secreted by the thyroid gland, are one of the most important halogenated compounds in the body. Thyroid hormones control almost every processes in the body including growth, body temperature, protein synthesis, carbohydrate and fat metabolism, heart rate, and cardiovascular, renal and brain function. Thyroid gland secretes L-thyroxine or 3,3',5,5'-tetraiodothyronine (T4) as a prohormone. While the biologically active hormone 3,3',5-triiodothyronine (T3) is produced by selective phenolic ring deiodination of T4, selective tyrosyl ring deiodination of T4 produces a biologically less active metabolite 3,3',5'-triiodothyronine (rT3). Tyrosyl and phenolic ring deiodination of T3 and rT3, respectively, also produces a biologically inactive metabolite 3,3'-diiodothyronine (3,3'-T2). Regioselective deiodinations of thyroid hormones are catalysed by three isoforms of a selenoenzyme iodothyronine deiodinase (DIO1, DIO2, DIO3). DIO1 can remove iodine from both the tyrosyl and phenolic rings of thyroid hormones, whereas DIO2 and DIO3 are selective towards phenolic and tyrosyl ring, respectively. Although the Figure 1. (A) Deiodination of thyroid hormones by iodothyronine deiodinases (DIOs) (A) and naphthyl-based selenium and/or sulphur compounds (B). mystery behind the origin of regioselectivity of deiodination by DIOs remains unsolved, formation of halogen bonding between selenium in the active site of DIOs and iodine of thyroid hormones has been widely accepted as the mechanism of deiodination. Halogen bonding, a noncovalent interaction between halogen and an electron donor such as nitrogen, oxygen, sulphur, selenium etc., elongates the C-I bond and impart a carbanionic character on the carbon atom that gets protonated after the removal of iodide. Apart from the deiodination, thyroid hormones also undergo decarboxylation, oxidative deamination, sulphate-conjugation to form iodothyronamines, iodothyroaetic acids and sulphated thyroid hormones, respectively. Figure 2. (A) Proposed mechanism of deiodination of thyroid hormones by deiodinase mimics. (B) Halogenation of uracil- and cytosine-containing nucleosides by hypohalous acid (HOX). Recently, naphthyl-based selenium/sulphur-containing compounds, such as compound 1 (Figure 1B), have been reported to mediate the selective tyrosyl ring deiodination of T4 and T3 to form rT3 and 3,3'-T2, respectively. Interestingly, replacement of the selenol moiety in compound 1 with a thiol decreases the activity, whereas replacement of the thiol moiety with another selenol dramatically increases the deiodination activity. Based on the detailed experimental and theoretical investigations, a mechanism involving the Se···I halogen bonding was proposed (Figure 2A). In addition to the halogen bonding between selenium and iodine atom, chalcogen bonding between two nearby chalcogen atoms was also shown to be important for the deiodination activity. Another important class of halogenated compounds in the body are the halogenated nucleosides. Myeloperoxidase and eosinophil peroxidase are heme-containing enzymes, which can convert halide ions (X¯) into a toxic reactive halogen species hypohalous acid (HOX) in presence of hydrogen peroxide (H2O2). Uracil- and cytosine-containing nucleosides are known to undergo halogenation at the 5-position of the nucleobase to form the halogenated nucleosides (Figure 2B). Interestingly, halogenated nucleosides such as 5-halo-2'-deoxyuridine are known to be incorporated in the DNA of dividing cells essentially substituting for thymidine. Incorporation of halogenated nucleosides into the DNA leads to mutagenesis, carcinogenesis and loss of genome integrity. Thymidylate synthase (TSase), the key enzyme involved in the biosynthesis of 2'-deoxythmidine-5'-monophosphate (dTMP) from 2'-deoxyuridine-5'-monophosphate (dUMP), can catalyse the dehalogenation of halogenated nucleotides in presence of external thiols. This thesis consists of five chapters. The first chapter provides a general introduction to halogen bonding, thyroid hormones and halogenated nucleosides. This chapter also briefly describes the halogen bond-mediated biochemical and biomimetic deiodinations of thyroid hormones by iodothyronine deiodinases and naphthyl-based organoselenium compounds. Dehalogenation of halogenated nucleotides by thymidylate synthase and thiol-based small molecules has also been discussed in this chapter. The second chapter of this thesis contains the regioselective deiodination of iodothyronamines (TAMs) by deiodinases mimics. TAMs are the endogenous metabolites produced by the decarboxylation of β-alanine side chain of thyroid hormones (THs). 3,3',5-triiodothyronamine (T3AM) and 3,5-diiodothyronamine (3,5-T2AM) undergoes selective tyrosyl ring deiodination by deiodinase mimics to form 3,3'-diiodothyronamine (3,3'-T2AM) and 3-iodothyronamine (3-T1AM), respectively. Interestingly, when the initial rates of deiodinations of T3 and T3AM were compared, deiodination of T3 was found to be several fold faster than that of T3AM under identical reaction conditions. To understand the ability of the iodine atoms to form Figure 3. (A) HPLC chromatogram of deiodination of T3. (B) Proposed mode of interaction of dimeric T3 and monomeric T3AM with organoselenium compounds. halogen bonding, a model selenolate (MeSe¯) was optimized with the T3 and T3AM. Although both T3 and T3AM forms the expected Se···I halogen bonding with MeSe¯, the strength of halogen bonding was found to be less for T3AM than T3. Furthermore, detailed kinetic and spectroscopic studies indicate that T3 and T3AM exist as dimeric and monomeric species in solution. The dimerization of T3 in solution was shown to have remarkable impact on the activation energy and pre-exponential factor of the deiodination reactions. Single crystal X-Ray crystallography and theoretical calculations indicated that in addition to Se···I halogen bonding, I···I halogen bonding may play an important role in the deodination of thyroid hormones by deiodinase mimics. Furthermore, the presence of heteroatoms such as nitrogen, oxygen and sulphur in the close proximity of one of the selenium atoms of deiodinase mimics was shown to have significant effect on the rate of deiodination reactions. The third chapter of the thesis focusses on the conformational polymorphism and conformation-dependent halogen bonding of L-thyroxine. Synthetic version of L-thyroxine (T4) is a life-saver for millions of people who are suffering from hypothyroidism, a thyroidal disorder recognised by low levels of T4 and elevated levels of TSH in blood plasma. Synthetic version of L-thyroxine is available in the Figure 4. Ball and stick model of the single crystal X-Ray structure of the conformational polymorphs of L-thyroxine. Form I and Form II was exclusively crystallized from methanol and acetonitrile, respectively. Water molecules are omitted for clarity. market with various brand names. However, adverse effects have been observed in the patients when they switch their brand of thyroxine. Based on these observations, the American Thyroid Association (ATA), the Endocrine Society (TES), and the American Association of Clinical Endocrinologists (AACE) declared that the different brands of T4 are not bioequivalent, thus leading to differences in the bioavailability of the drug. We have shown that the commercially available thyroxine exists in at least two stable forms (Form I and Form II) with different three-dimensional structures (Figure 4). These two forms exhibit different intermolecular interactions in crystal packing, spectral behaviours, thermal stabilities, optical activity and very interestingly, different solubility in acidic and basic pH. At pH 4, solubility of Form I is about 42% and 45% greater than that of Form II and bulk T4, respectively, whereas at pH 9, the solubility of Form II is about 38% and 42% higher than that of Form I and bulk T4, respectively. As T4 is a narrow therapeutic index drug, these differences in solubility may have remarkable impact on the bioavailability of the drug. In addition to this, we have shown that the ability of the iodine atoms in the C-I bonds to form halogen bond with donor atoms can be altered by changing the relative orientation of tyrosyl and phenolic rings in T4. In the fourth chapter, the three-dimensional structures and conformations of thyroid hormones (THs) and iodothyronamines (TAMs) are discussed. TAMs, the endogenous decarboxylated metabolites of THs, exhibit different binding affinities to the transport proteins and iodothyronine deiodinases (DIOs) compared to the THs. Figure 5. Change in the structure and conformations of thyroid hormones and iodothyronamines with the decarboxylation of amino acid side chain and deiodination of phenolic and tyrosyl ring. Furthermore, the substrate specificities of DIOs have been found to be dependent on the position of iodine atoms on the phenolic and tyrosyl ring of TAMs and THs. Single crystal X-ray structures of TAMs indicate that decarboxylation of amino acid side chain of THs induces significant changes in the structure and conformation. Furthermore, the positional isomers of THs and TAMs exhibit remarkably different conformations, which may have significant effect on the binding of these metabolites to the active site of DIOs. In addition to the structure and conformations, different categories of the intermolecular halogen···halogen (X···X) interactions in the crystal packing of THs and TAMs have also been discussed. Natural bond orbital (NBO) analysis have been done on the halogen-bonded geometries to understand the electronic nature of these interactions. In the fifth chapter, the dehalogenation of halogenated nucleosides and nucleobases by naphthyl-based sulphur/selenium compounds is discussed. Purine and pyrimidine nucleosides are halogenated at various positions of the aromatic ring by different peroxidases such as myeloperoxidase and eosinophil peroxidase present in the white blood cells. Incorporation of the halogenated nucleosides into the DNA of replicating cells leads to DNA-strand breaks, mutagenesis, carcinogenesis and loss of Figure 6. (A) Dehalogenation of halogenated nucleosides. Effect of base-pairing wih adenine and guanine on the deiodination of IU (B) and debromination of BrU (C) by compound 2. genome integrity. We have shown that the naphthalene-based organoselenium compounds such as compound 2 can mediate the dehalogenation of 5-iodo-2'-deoxyuridine (5-IdUd) and 5-bromo-2'-deoxyuridine (5-BrdUd) to produce 2'-deoxyuridine (dUd) (Figure 6A). The deiodination of 5-IdUd was found to be faster than the debromination of 5-BrdUd by compound 2. The mechanism of dehalogenation of halogenated nucleosides by compound 2 was found to be dependent on the nature of halogen. While the deiodination of 5-IdUd by compound 2 follow halogen bond-mediated pathway like thyroid hormones, debromination of 5-BrdUd follow a Michael addition-elimination pathway. Similar results were obtained when 5-iodo-2'-deoxycytidine (5-IdCd) or 5-bromo-2'-deoxycytidine (5-BrdCd) was used as substrate for dehalogenation reaction. Base-pairing of 5-iodouracil (IU) and 5-bromouracil (5-BrU) with adenine and guanine has a significant effect on the rate of dehalogenations of IU and BrU by compound 2 (Figure 6B and 6C).

Page generated in 0.0447 seconds