• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reply to comment by Z. Yi et al. on “Remagnetization of the Paleogene Tibetan Himalayan carbonate rocks in the Gamba area: Implications for reconstructing the lower plate in the India-Asia collision”

Huang, Wentao, Lippert, Peter C., Jackson, Michael J., Dekkers, Mark J., Zhang, Yang, Li, Juan, Guo, Zhaojie, Kapp, Paul, van Hinsbergen, Douwe J. J. 07 1900 (has links)
In their comment on our publications on pervasive remagnetization of Jurassic-Paleogene carbonate rocks of the Tibetan Himalaya (Huang et al., 2017, Journal of Geophysical Research: Solid Earth, 122, doi: 10.1002/2016JB013662 and 122, doi: 10.1002/2017JB013987), Yi et al. (2017) questioned our fold tests applied to their published paleomagenetic results from the Paleogene Zongpu and latest Cretaceous Zongshan carbonate rocks (Patzelt et al., 1996, Tectonophysics, 259(4), 259-284; Yi et al., 2011, Earth and Planetary Science Letters, 309(1), 153-165). They argued that authigenic magnetite pseudomorphic after pyrite, which is the dominant magnetic carrier within these carbonate rocks as indicated by our thorough rock magnetic and petrographic investigations, was formed during early diagenesis and that the primary natural remanent magnetization (NRM) is retained by these carbonate rocks. However, their statement for the invalidity of our fold tests is based on unrealistic assumptions that these carbonate rocks carry primary NRM and that the upper Zongpu Formation was deposited on a 10 degrees primary dip. Their argument for immediate oxidization of pyrite to authigenic magnetite after carbonate deposition onto the continental passive margin ignores that sulfate-reducing conditions were prevailing during early diagenesis, it is also inconsistent with the timing of the secondary remanence acquisition in remagnetized carbonate rocks elsewhere. As previously demonstrated, and agreed upon by Yi et al. (2017), the Zongpu and Zongshan carbonate rocks in Gamba are remagnetized; here we argue that the timing of remagnetization cannot be demonstrated to shortly postdate sedimentation. These data should therefore not be used for tectonic reconstructions.
2

Remagnetization of carbonate rocks in southern Tibet: Perspectives from rock magnetic and petrographic investigations

Huang, Wentao, Lippert, Peter C., Zhang, Yang, Jackson, Michael J., Dekkers, Mark J., Li, Juan, Hu, Xiumian, Zhang, Bo, Guo, Zhaojie, van Hinsbergen, Douwe J. J. 04 1900 (has links)
The latitudinal motion of the Tibetan Himalayathe northernmost continental unit of the Indian plateis a key component in testing paleogeographic reconstructions of the Indian plate before the India-Asia collision. Paleomagnetic studies of sedimentary rocks (mostly carbonate rocks) from the Tibetan Himalaya are complicated by potentially pervasive yet cryptic remagnetization. Although traditional paleomagnetic field tests reveal some of this remagnetization, secondary remanence acquired prior to folding or tilting easily escapes detection. Here we describe comprehensive rock magnetic and petrographic investigations of Jurassic to Paleocene carbonate and volcaniclastic rocks from Tibetan Himalayan strata (Tingri and Gamba areas). These units have been the focus of several key paleomagnetic studies for Greater Indian paleogeography. Our results reveal that while the dominant magnetic carrier in both carbonate and volcaniclastic rocks is magnetite, their magnetic and petrographic characteristics are distinctly different. Carbonate rocks have wasp-waisted hysteresis loops, suppressed Verwey transitions, extremely fine grain sizes (superparamagnetic), and strong frequency-dependent magnetic susceptibility. Volcaniclastic rocks exhibit pot-bellied hysteresis loops and distinct Verwey transitions. Electron microscopy reveals that magnetite grains in carbonate rocks are pseudomorphs of early diagenetic pyrite, whereas detrital magnetite is abundant and pyrite is rarely oxidized in the volcaniclastic rocks. We suggest that the volcaniclastic rocks retain a primary remanence, but oxidation of early diagenetic iron sulfide to fine-grained magnetite has likely caused widespread chemical remagnetization of the carbonate units. We recommend that thorough rock magnetic and petrographic investigations are prerequisites for paleomagnetic studies throughout southern Tibet and everywhere in general.

Page generated in 0.032 seconds