• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Architecture of deposits formed in a tectonically generated tidal strait, upper Baronia Fm., Ager Basin, South Central Pyrenees, Spain

Bens, Ashley Elizabeth 15 July 2011 (has links)
The upper Baronia Fm. of the Ager Basin, Spain, is composed of a hierarchy of prominently stacked sets of primarily unidirectional cross-strata in units up to 40m thick. These large sets of cross-strata are interpreted as deposits of migrating subaqueous tidal simple dunes, compound dunes, and compound dune complexes within an approximately 10km wide north-east to south-west oriented seaway with water depths of a calculated 60-90m. These interpretations are opposed to prior interpretations of the upper Baronia Fm. which suggests deposits were formed by tidal bars within a deltaic environment (Mutti et al., 1985). Dunes developed due to dominantly north-east directed tidal currents driven through the strait by tidal phase differences between the two bodies of water (Mediterranean and Atlantic basins) connected by the seaway. Evidence for syn-tectonic deposition further constrains timing of movement of the northern basin bounding Montsec thrust to the early Eocene. Indicators for movement on the Montsec thrust include the development of the Ager Basin elongate to the thrust front, and syn-tectonic signals in the fill of the basin such as local conglomerate wedges and emplacement of olistoliths. Individual cross-stratified successions are interpreted to have formed with variable flow velocity and orientation, resulting in a basin wide stacking of compound dune complexes. These compound dune complexes form cross stratified successions which are distributed throughout the basin according to the variable current speeds, dune size which impacts migration, and sediment availability during deposition. This results in the observed distributions of muddy and sandy sediments, where finer grained materials accumulate preferentially in the low energy troughs of the hierarchy of compound dunes. / text
2

Tidal sedimentology and geomorphology in the central Salish Sea straits, British Columbia and Washington State

Mullan, Sean 03 January 2018 (has links)
Intra-archipelago waterways, including tidal strait networks, present a complex set of barriers to, and conduits for sediment transport between marine basins. Tidal straits may also be the least well understood tide-dominated sedimentary environment. To address these issues, currents, sediment transport pathways, and seabed sedimentology & geomorphology were studied in the central Salish Sea (Gulf and San Juan Islands region) of British Columbia, Canada and Washington State, USA. A variety of data types were integrated: 3D & 2D tidal models, multibeam bathymetry & backscatter, seabed video, grab samples, cores and seismic reflection. This dissertation included the first regional sediment transport modelling study of the central Salish Sea. Lagrangian particle dispersal simulations were driven by 2D tidal hydrodynamics (~59-days). It was found that flood-tide dominance through narrow intra-archipelago connecting straits resulted in the transfer of sediment into the inland Strait of Georgia, an apparent sediment sink. The formative/maintenance processes at a variety of seabed landforms, including a banner bank with giant dunes, were explained with modelled tides and sediment transport. Deglacial history and modern lateral sedimentological and morphological transitions were also considered. Based on this modern environment, adjustments to the tidal strait facies model were identified. In addition, erosion and deposition patterns across the banner bank (dune complex) were monitored with 8-repeat multibeam sonar surveys (~10 years). With these data, spatially variable bathymetric change detection techniques were explored: A) a cell-by-cell probabilistic depth uncertainty-based threshold (t-test); and B) coherent clusters of change pixels identified with the local Moran's Ii spatial autocorrelation statistic. Uncertainty about volumetric change is a considerable challenge in seabed change research, compared to terrestrial studies. Consideration of volumetric change confidence intervals tempers interpretations and communicates metadata. Techniques A & B may both be used to restrict volumetric change calculations in area, to exclude low relative bathymetric change signal areas. / Graduate / 2018-12-07

Page generated in 0.0384 seconds