• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification of the most effective factors responsible for the flushing of a tracer in a system of shallow bays

Palazzoli, Irene 31 July 2017 (has links)
The exchange of dissolved constituents between a shallow bay and the ocean is governed by regular tidal fluxes as well as by wind generated storm surges and currents. In this study the transport of a conservative tracer was simulated using the numerical model Delft3D in a system of shallow bays along the coast of the Delmarva Peninsula, Virginia. The evaluation of the tracer residence time was carried out using the Eulerian approach. The main mechanisms governing the decay of the tracer concentration inside the lagoons were assessed by considering the influence of different factors such as the time of release of the tracer with respect to the tidal cycle, tidal amplitude, and local winds. The exponential curve well approximates the decay of the tracer concentration in time. A set of simulations shows that the prevailing factor controlling the tracer transport and, therefore, the tracer concentration within the lagoons are wind-driven fluxes. Large tidal amplitudes also promote the flushing of the tracer out of the bay, while the time of tracer release with respect to the tidal phase has been found to play a relatively negligible role. Finally, a simplified approach is presented to compute the decay of tracer concentration in time. The method accounts for hourly variable wind characteristics as well as seasonal changes in meteorological conditions.
2

HABITAT PREFERENCES OF GULF COAST FIDDLER CRABS AND RESPONSES OF PLANT AND SOIL CHARACTERISTICS TO THEIR BURROWING

Murphy, Gwendolyn Ann 01 May 2020 (has links)
Research in salt marshes dominated by the grass Sporobolus alterniflorus indicates that plant characteristics affect fiddler crab burrowing and in turn, crab activity can enhance primary productivity by increasing soil oxygen and nutrient cycling. Crab-plant interactions are less understood in microtidal Gulf Coast marshes compared to Atlantic Coast tidal marshes. It is unknown how structure of the dominant Gulf Coast vegetation zones (salt marsh, brackish marsh, fresh marsh and salt pannes) affects density of crab burrows and how burrows may influence primary productivity. I hypothesized that fiddler crabs would be most abundant in marsh zones with intermediate substrate hardness and vegetation density (Goldilocks Hypothesis). A seasonal habitat preference study was conducted during 2016-2017 in tidal marshes at Grand Bay National Estuarine Research Reserve in coastal Mississippi using burrow density as a proxy for crab abundance. Plant above- and below-ground biomass, burrow proximity to vegetation, and soil hardness were also surveyed as potential drivers of fiddler crab populations. The results indicated that fiddler crabs burrow in all four zones, but to varying degrees, and that burrow density was highest during autumn. The fresh marsh had the highest average density of burrows, as well as vegetation and soil parameters most representative of intermediate habitat, thereby supporting the “Goldilocks Hypothesis”. The brackish marsh also proved to be important fiddler crab habitat. Preferential fiddler crab usage of habitat upslope of salt marsh, e.g., fresh and brackish marsh, in Gulf Coast sites suggests that they may avoid immediate impacts of rising sea levels and possibly even migrate to higher ground if needed.

Page generated in 0.1654 seconds