• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 9
  • 3
  • 1
  • Tagged with
  • 36
  • 36
  • 11
  • 10
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Selection of fracture fluid for stimulating tight gas reservoirs

Malpani, Rajgopal Vijaykumar 25 April 2007 (has links)
Essentially all producing wells drilled in tight gas sands and shales are stimulated using hydraulic fracture treatments. The development of optimal fracturing procedures, therefore, has a large impact on the long-term economic viability of the wells. The industry has been working on stimulation technology for more than 50 years, yet practices that are currently used may not always be optimum. Using information from the petroleum engineering literature, numerical and analytical simulators, surveys from fracturing experts, and statistical analysis of production data, this research provides guidelines for selection of the appropriate stimulation treatment fluid in most gas shale and tight gas reservoirs. This study takes into account various parameters such as the type of formation, the presence of natural fractures, reservoir properties, economics, and the experience of experts we have surveyed. This work provides a guide to operators concerning the selection of an appropriate type of fracture fluid for a specific set of conditions for a tight gas reservoir.
2

Numerical simulation of production from tight gas reservoirs by advanced stimulation technologies

Friedel, Torsten. January 2004 (has links) (PDF)
Freiberg (Sachsen), Techn. University, Diss., 2004.
3

Stress-dependent permeability on tight gas reservoirs

Rodriguez, Cesar Alexander 17 February 2005 (has links)
People in the oil and gas industry sometimes do not consider pressure-dependent permeability in reservoir performance calculations. It basically happens due to lack of lab data to determine level of dependency. This thesis attempts to evaluate the error introduced in calculations when a constant permeability is assumed in tight gas reservoir. It is desired to determine how accurate are conventional pressure analysis calculations when the reservoir has a strong pressure-dependent permeability. The analysis considers the error due to effects of permeability and skin factor. Also included is the error associated when calculating Original Gas in Place in the reservoir. The mathematical model considers analytical and numerical solutions of radial and linear flow of gas through porous media. The model includes both the conventional method, which assumes a constant permeability (pressure-independent), and a numerical method that incorporates a pressure-dependent permeability. Analysis focuses on different levels of pressure draw down in a well located in the center of a homogeneous reservoir considering two types of flow field geometries: radial and linear. Two different producing control modes for the producer well are considered: constant rate and constant bottom hole pressure. Methodology consists of simulated tight gas well production with k(p) included. Then, we analyze results as though k(p) effects were ignored and finally, observe errors in determining permeability (k) and skin factor (s). Additionally, we calculate pore volume and OGIP in the reservoir. Analysis demonstrates that incorporation of pressure-dependence of permeability k(p) is critical in order to avoid inference of erroneous values of permeability, skin factor and OGIP from well test analysis of tight gas reservoirs. Estimation of these parameters depends on draw down in the reservoir. The great impact of permeability, skin factor and OGIP calculations are useful in business decisions and profitability for the oil company. Miscalculation of permeability and skin factor can lead to wrong decisions regarding well stimulation, which reduces well profitability. In most cases the OGIP calculated is underestimated. Calculated values are lower than the correct value. It can be taken as an advantage if we consider that additional gas wells and reserves would be incorporated in the exploitation plan.
4

Stress-dependent permeability on tight gas reservoirs

Rodriguez, Cesar Alexander 17 February 2005 (has links)
People in the oil and gas industry sometimes do not consider pressure-dependent permeability in reservoir performance calculations. It basically happens due to lack of lab data to determine level of dependency. This thesis attempts to evaluate the error introduced in calculations when a constant permeability is assumed in tight gas reservoir. It is desired to determine how accurate are conventional pressure analysis calculations when the reservoir has a strong pressure-dependent permeability. The analysis considers the error due to effects of permeability and skin factor. Also included is the error associated when calculating Original Gas in Place in the reservoir. The mathematical model considers analytical and numerical solutions of radial and linear flow of gas through porous media. The model includes both the conventional method, which assumes a constant permeability (pressure-independent), and a numerical method that incorporates a pressure-dependent permeability. Analysis focuses on different levels of pressure draw down in a well located in the center of a homogeneous reservoir considering two types of flow field geometries: radial and linear. Two different producing control modes for the producer well are considered: constant rate and constant bottom hole pressure. Methodology consists of simulated tight gas well production with k(p) included. Then, we analyze results as though k(p) effects were ignored and finally, observe errors in determining permeability (k) and skin factor (s). Additionally, we calculate pore volume and OGIP in the reservoir. Analysis demonstrates that incorporation of pressure-dependence of permeability k(p) is critical in order to avoid inference of erroneous values of permeability, skin factor and OGIP from well test analysis of tight gas reservoirs. Estimation of these parameters depends on draw down in the reservoir. The great impact of permeability, skin factor and OGIP calculations are useful in business decisions and profitability for the oil company. Miscalculation of permeability and skin factor can lead to wrong decisions regarding well stimulation, which reduces well profitability. In most cases the OGIP calculated is underestimated. Calculated values are lower than the correct value. It can be taken as an advantage if we consider that additional gas wells and reserves would be incorporated in the exploitation plan.
5

Assessment of API Thread Connections Under Tight Gas Well Conditions

Bourne, Dwayne 14 January 2010 (has links)
The modern oil and gas industry of America has seen most of the high quality, easily obtainable resources, already produced, thus causing wells to be drilled deeper in search for unconventional resources. This means Oil Country Tubular Goods (OCTG) must improve in order to withstand harsher conditions; especially the ability of connections to effectively create leak tight seals. This study investigates the use of thread connections in tight gas fields; therefore, an insight into their potential to contribute to fulfilling the energy demands is necessary. Also, a survey of completed projects done in tight gas fields can provide vital information that will establish the minimum requirements thread connection must meet to perform its functions. To make suitable adjustments to ensure safe and efficient operations we must thoroughly understand the many aspects of thread connections. To have this understanding, a review of previous works was carried out that highlights the capabilities and imitations of thread connections. In addition to reviewing previous work done on thread connections; this study measured the viscosity of thread compounds under variable conditions. It was found that viscosity of thread compound falls in the range of 285,667 cP and 47,758 cP when measured between 32.9 degrees F and 121.5 degrees F. This can be very important because thread compound is essential to the function of thread connections. The knowledge of its viscosity can help choose the most suitable compound. By knowing the value of the viscosity of a thread compound it can also be used to form an analytical assessment of the grooved plate method by providing a means to calculate a pressure gradient which impacts the leakage.
6

Developing a tight gas sand advisor for completion and stimulation in tight gas reservoirs worldwide

Bogatchev, Kirill Y. 15 May 2009 (has links)
As the demand for energy worldwide increases, the oil and gas industry will need to increase recovery from unconventional gas reservoirs (UGR). UGRs include Tight Gas Sand (TGS), coalbed methane and gas shales. To economically produce UGRs, one must have adequate product price and one must use the most current technology. TGS reservoirs require stimulation as a part of the completion, so improvement of completion practices is very important. We did a thorough literature review to extract knowledge and experience about completion and stimulation technologies used in TGS reservoirs. We developed the principal design and two modules of a computer program called Tight Gas Sand Advisor (TGS Advisor), which can be used to assist engineers in making decisions while completing and stimulating TGS reservoirs. The modules include Perforation Selection and Proppant Selection. Based on input well/reservoir parameters these subroutines provide unambiguous recommendations concerning which perforation strategy(s) and what proppant(s) are applicable for a given well. The most crucial parameters from completion best-practices analyses and consultations with experts are built into TGS Advisor’s logic, which mimics human expert’s decision-making process. TGS Advisor’s recommended procedures for successful completions will facilitate TGS development and improve economical performance of TGS reservoirs.
7

Completion methods in thick, multilayered tight gas sands

Ogueri, Obinna Stavely 15 May 2009 (has links)
Tight gas sands, coal-bed methane, and gas shales are commonly called unconventional reservoirs. Tight gas sands (TGS) are often described as formations with an expected average permeability of 0.1mD or less. Gas production rates from TGS reservoirs are usually low due to poor permeability. As such, state-of-the-art technology must be used to economically develop the resource. TGS formations need to be hydraulically fractured in order to enhance the gas production rates. A majority of these reservoirs can be described as thick, multilayered gas systems. Many reservoirs are hundreds of feet thick and some are thousands of feet thick. The technology used to complete and stimulate thick, tight gas reservoirs is quite complex. It is often difficult to determine the optimum completion and stimulating techniques in thick reservoirs. The optimum methods are functions of many parameters, such as depth, pressure, temperature, in-situ stress and the number of layers. In multilayered reservoirs, it is important to include several sand layers in a single completion. The petroleum literature contains information on the various diversion techniques involved in the completion of these multilayered reservoirs. In this research, we have deduced and evaluated eight possible techniques that have been used in the oil and gas industry to divert multilayered fracture treatments in layered reservoirs. We have developed decision charts, economic analyses and computer programs that will assist completion engineers in determining which of the diversion methods are feasible for a given well stimulation. Our computer programs have been tested using case histories from the petroleum literature with results expressed in this thesis. A limited entry design program has also being developed from this research to calculate the fluid distribution into different layers when fracture treating multilayered tight gas reservoirs using the limited entry technique. The research is aimed at providing decision tools which will eventually be input into an expert advisor for well completions in tight gas reservoirs worldwide.
8

Application of the Continuous EUR Method to Estimate Reserves in Unconventional Gas Reservoirs

Currie, Stephanie M. 2010 August 1900 (has links)
Reserves estimation in unconventional (low/ultra-low permeability) reservoirs has become a topic of increased interest as more of these resources are being developed, especially in North America. The estimation of reserves in unconventional reservoirs is challenging due to the long transient flow period exhibited by the production data. The use of conventional methods (i.e., Arps' decline curves) to estimate reserves is often times inaccurate and leads to the overestimation of reserves because these models are only (theoretically) applicable for the boundary-dominated flow regime. The premise of this work is to present and demonstrate a methodology which continuously estimates the ultimate recovery during the producing life of a well in order to generate a time-dependent profile of the estimated ultimate recovery (EUR). The "objective" is to estimate the final EUR value(s) from several complimentary analyses. In this work we present the "Continuous EUR Method" to estimate reserves for unconventional gas reservoirs using a rate-time analysis approach. This work offers a coherent process to reduce the uncertainty in reserves estimation for unconventional gas reservoirs by quantifying "upper" and "lower" limits of EUR prior to the onset of boundary-dominated flow. We propose the use of traditional and new rate-time relations to establish the "upper" limit for EUR. We clearly demonstrate that rate-time relations which better represent the transient and transitional flow regimes (in particular the power law exponential rate decline relation) often lead to a more accurate "upper" limit for reserves estimates — earlier in the producing life of a well (as compared to conventional ("Arps") relations). Furthermore, we propose a straight line extrapolation technique to offer a conservative estimate of maximum produced gas which we use as the "lower" limit for EUR. The EUR values estimated using this technique continually increase with time, eventually reaching a maximum value. We successfully demonstrate the methodology by applying the approach to 43 field examples producing from 7 different tight sandstone and shale gas reservoirs. We show that the difference between the "upper" and "lower" limit of reserves decreases with time and converges to the "true" value of reserves during the latter producing life of a well.
9

Developing a tight gas sand advisor for completion and stimulation in tight gas reservoirs worldwide

Bogatchev, Kirill Y 10 October 2008 (has links)
As the demand for energy worldwide increases, the oil and gas industry will need to increase recovery from unconventional gas reservoirs (UGR). UGRs include Tight Gas Sand (TGS), coalbed methane and gas shales. To economically produce UGRs, one must have adequate product price and one must use the most current technology. TGS reservoirs require stimulation as a part of the completion, so improvement of completion practices is very important. We did a thorough literature review to extract knowledge and experience about completion and stimulation technologies used in TGS reservoirs. We developed the principal design and two modules of a computer program called Tight Gas Sand Advisor (TGS Advisor), which can be used to assist engineers in making decisions while completing and stimulating TGS reservoirs. The modules include Perforation Selection and Proppant Selection. Based on input well/reservoir parameters these subroutines provide unambiguous recommendations concerning which perforation strategy(s) and what proppant(s) are applicable for a given well. The most crucial parameters from completion best-practices analyses and consultations with experts are built into TGS Advisor's logic, which mimics human expert's decision-making process. TGS Advisor's recommended procedures for successful completions will facilitate TGS development and improve economical performance of TGS reservoirs.
10

Completion methods in thick, multilayered tight gas sands

Ogueri, Obinna Stavely 10 October 2008 (has links)
Tight gas sands, coal-bed methane, and gas shales are commonly called unconventional reservoirs. Tight gas sands (TGS) are often described as formations with an expected average permeability of 0.1mD or less. Gas production rates from TGS reservoirs are usually low due to poor permeability. As such, state-of-the-art technology must be used to economically develop the resource. TGS formations need to be hydraulically fractured in order to enhance the gas production rates. A majority of these reservoirs can be described as thick, multilayered gas systems. Many reservoirs are hundreds of feet thick and some are thousands of feet thick. The technology used to complete and stimulate thick, tight gas reservoirs is quite complex. It is often difficult to determine the optimum completion and stimulating techniques in thick reservoirs. The optimum methods are functions of many parameters, such as depth, pressure, temperature, in-situ stress and the number of layers. In multilayered reservoirs, it is important to include several sand layers in a single completion. The petroleum literature contains information on the various diversion techniques involved in the completion of these multilayered reservoirs. In this research, we have deduced and evaluated eight possible techniques that have been used in the oil and gas industry to divert multilayered fracture treatments in layered reservoirs. We have developed decision charts, economic analyses and computer programs that will assist completion engineers in determining which of the diversion methods are feasible for a given well stimulation. Our computer programs have been tested using case histories from the petroleum literature with results expressed in this thesis. A limited entry design program has also being developed from this research to calculate the fluid distribution into different layers when fracture treating multilayered tight gas reservoirs using the limited entry technique. The research is aimed at providing decision tools which will eventually be input into an expert advisor for well completions in tight gas reservoirs worldwide.

Page generated in 0.0611 seconds