• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of the environment on fitness related life history characters in Tigriopus californicus

Vittor, Barry Adolph, 1944- 09 1900 (has links)
Thesis (Ph.D.)--Oregon, Dept. of Biology Vita Bibliography: l. [108]-115
2

Salinity and upper temperature tolerances of a rockpool copepod, Tigriopus californicus (Baker, 1912)

Herbert, James, 1947- 12 1900 (has links)
viii, 88 leaves : ill. ; 29 cm Notes Typescript (Another copy on microfilm is located in Archives) Thesis (M.A.)--University of Oregon Includes vita Bibliography: leaves 83-88
3

Diet dependent sex ratios in Tigriopus californicus: Evidence for environmental sex determination in a system with polygenic sex determination

Hornell, Erin Charmaine 19 October 2017 (has links)
By controlling the inheritance of sex, the sex determination mechanism constrains sex allocation strategies and sex ratio adaptation; however, sex ratio selection also influences the evolution of sex determination mechanisms. Much of the sex determination literature focuses on how sex determination mechanisms transition between genetic and environmental factors (i.e. GSD vs. ESD), and if genetic sex factors are involved, how many (e.g. chromosomal vs polygenic systems). The study of sex allocation largely focuses on deviations in sex ratio from a theoretically 1:1 evolutionarily stable strategy, such as when sex ratios reflect ‘cost’ differences between the sexes. Tigriopus californicus is a tidepool copepod with polygenic sex determination, and shows wide variability in sex ratios in the field and lab that cannot be explained by genetic and stochastic processes alone, which suggests that an environmental variable might influence sex ratio. Females and their offspring were fed diets of different nutritional quality in a crossed design, and the sex ratio of each clutch was recorded for up to 8 clutches from a given female: this design allowed the influence of female diet vs. that of her offspring to be distinguished. The clutch sex ratio changed over the laying order according to the offspring’s diet, which is evidence for environmental sex determination in this species. Sex ratio also showed the influence of maternal diet, consistent with sex allocation theory. While dietary carotenoids showed no association with sex ratio or clutch size, long chain polyunsaturated fatty acids (particularly EPA and DHA) were implicated as the agent of sex ratio effect, providing a direction for future studies. The situation of T. californicus at the intersection of major themes in sex evolution makes this system an ideal model for selection studies. / Graduate / 2018-09-13
4

The extraordinary sex ratios in the splash pool copepod Tigriopus californicus

Tai, Travis Christopher 27 August 2014 (has links)
Fisher’s adaptive sex ratio theory predicts that organisms should invest equally in sons and daughters and the sex ratio at conception should be 1:1. Hamilton’s theory predicts that organisms should adjust sex ratios based on the relative strength of competition within a mating group. Testing sex ratio and sex allocation theories requires variation in sex ratio. Different sex allocation and sex allocation adjustment mechanisms can produce skewed sex ratios. I used Tigriopus californicus, a harpacticoid copepod with extrabinomial variation in sex ratios, to test sex ratio evolution and socially-mediated sex determination. Using artificially selected sex-biased populations, the trajectory of population sex ratios were as expected under Fisher’s theory and sex ratios approached/reached 0.5 proportion males. Populations with overlapping generations had a slower rate of change towards 0.5 than populations with non-overlapping generations. I show that these data are supported by multiple different models: a mechanistic and simulation model. I tested socially-mediated sex determination using seawater conditioned with different local sex ratios of copepods. There were detectable effects found in both wild populations and isofemale lines. However, these effects may be trivial as differences were small between treatments. Sex determination in T. californicus is a complex mechanism, with multiple genetic and environmental components. The complex nature of sex determination in T. californicus and the dynamic nature of their habitat in highly ephemeral splash pools provide a possible explanation for the non-Fisherian sex ratios we see. / Graduate

Page generated in 0.0687 seconds