• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thin topping timber-concrete composite floors

Skinner, Jonathan January 2014 (has links)
A timber-concrete composite (TCC) combines timber and concrete, utilising the complementary properties of each material. The composite is designed in such a way that the timber resists combined tension and bending, whilst the concrete resists combined compression and bending. This construction technique can be used either in new build construction, or in refurbishment, for upgrading existing timber structures. Its use is most prolific in continental Europe, Australasia, and the United States of America but has yet to be widely used in the United Kingdom. To date, the topping upgrades used have been 40mm thick or greater. Depending on the choice of shear connection, this can lead to a four-fold increase in strength and stiffness of the floor. However, in many practical refurbishment situations, such a large increase in stiffness is not required, therefore a thinner topping can suffice. The overarching aim of this study has been to develop a thin (20mm) topping timber-concrete composite upgrade with a view to improving the serviceability performance of existing timber floors. Particular emphasis was given to developing an understanding of how the upgrade changes the stiffness and transient vibration response of a timber floor. Initially, an analytical study was carried out to define an appropriate topping thickness. An experimental testing programme was then completed to: characterise suitable shear connectors under static and cyclic loads, assess the benefit of the upgrade to the short-term bending performance of panels and floors, and evaluate the influence of the upgrade on the transient vibration response of a floor. For refurbishing timber floors, a 20mm thick topping sufficiently increased the bending stiffness and improved the transient vibration response. The stiffness of the screw connectors was influenced by the thickness of the topping and the inclination of the screws. During the short-term bending tests, the gamma method provided a non-conservative prediction of composite bending stiffness. In the majority of cases the modal frequencies of the floors tested increased after upgrade, whilst the damping ratios decreased. The upgrade system was shown to be robust as cracking of the topping did not influence the short-term bending performance of panels. Thin topping TCC upgrades offer a practical and effective solution to building practitioners, for improving the serviceability performance of existing timber floors.
2

Analysis of the Timber-concrete Composite Systems with Ductile Connection

Zhang, Chao 17 July 2013 (has links)
In timber-concrete composite systems, timber and concrete are inherently brittle materials that behave linearly elastic in both tension and bending. However, the shear connection between the members can exhibit significant ductility. It is therefore possible to develop timber-concrete composite systems with ductile connection that behave in a ductile fashion. This study illustrates the use of an elastic-perfectly plastic analytical approach to this problem. In addition, the study proposes an incremental method for predicting the nonlinear load-deflection response of the composite system. The accuracy of the analytical model is confirmed with a computer model, and numerical solutions of the analytical model are compared to experimental results from the bending tests conducted by previous researchers. Reasonable agreement is found from the comparisons, which validates the capacity of the analytical model in predicting the structural behaviour of the timber-concrete composite systems in both elastic and post-elastic stages.
3

Analysis of the Timber-concrete Composite Systems with Ductile Connection

Zhang, Chao 17 July 2013 (has links)
In timber-concrete composite systems, timber and concrete are inherently brittle materials that behave linearly elastic in both tension and bending. However, the shear connection between the members can exhibit significant ductility. It is therefore possible to develop timber-concrete composite systems with ductile connection that behave in a ductile fashion. This study illustrates the use of an elastic-perfectly plastic analytical approach to this problem. In addition, the study proposes an incremental method for predicting the nonlinear load-deflection response of the composite system. The accuracy of the analytical model is confirmed with a computer model, and numerical solutions of the analytical model are compared to experimental results from the bending tests conducted by previous researchers. Reasonable agreement is found from the comparisons, which validates the capacity of the analytical model in predicting the structural behaviour of the timber-concrete composite systems in both elastic and post-elastic stages.
4

Flexural Strength and Behavior of Timber-Concrete Composite Floors with Hexagonally Headed Self-Tapping Screw Shear Connectors

Arrington, Benjamin David 07 April 2022 (has links)
Timber-concrete composite (TCC) floor systems consist of a bottom layer of wood that is connected to a top layer of concrete using shear connectors. The shear connectors resist slip between the layers, thus allowing wood and concrete develop composite action when subjected to flexure. The objective of this study is to determine the flexural strength and behavior of TCC floor systems that consist of a cross laminated timber wood layer connected to a concrete top layer using hexagonally headed self-tapping screw shear connectors. To accomplish the objective, coupon specimens and full-scale TCC floor panels were tested, and a finite element modelling approach was developed. The coupon tests were used to determine the stiffness of the shear connection and to determine the effect of the screw configuration. The results from the coupon tests indicated that the inclined screw configuration provided the largest shear strength compared to the normal, crossed, and nested screw configurations. Based on the results from the coupon tests, bending and vibration (heel drop) tests were conducted on full-scale panel specimens with an inclined screw configuration and with a strong-axis panel orientation. The results from the full-scale panel tests showed that the flexural stiffness and strength of the TCC floor system was consistent and that the composite floor panels have adequate stiffness to minimize transient floor vibrations that are caused by walking for typical span lengths and typical loading. A finite element model of TCC floor systems was developed to simulate TCC floor systems and calibrated with the test data. The simulated response matched the test response fairly well for partially composite single-span and double-span panels. Additional refinement of the model is needed to better match fully composite panels. The research demonstrated that hexagonal-headed self-tapping screws may be effectively used to connect wood and concrete layers in TCC floor systems.
5

Behaviour and Design of Timber-Concrete Composite Floor System

Yeoh, David Eng Chuan January 2010 (has links)
This Ph.D. thesis represents a summative report detailing research processes and outcomes from investigating the ultimate and serviceability limit state short- and long-term behaviour and design of timber-concrete composite floors. The project enables the realization of a semi-prefabricated LVL-concrete composite floor system of up to 15 m long using 3 types of connection. Design span tables which satisfy the ultimate and serviceability limit state short- and long-term verifications for this system form the novel contribution of this thesis. In quantifying the behaviour of timber-concrete composite floors, 5 different experimental phases have been carried. 9 major achievements in meeting 9 sub-objectives have been concluded: 1) Three best types of connection system for timber-concrete composite floors have been identified; 2) The characteristic strength and secant slip moduli for these connections have been determined; 3) The short-term behaviour of the selected connections defined by their pre- and post-peak responses under collapse load has been established; 4) An analytical model for the strength evaluation of the selected connections based on the different possible modes of failure has been derived; 5) Easy and fast erected semi-prefabricated timber-concrete composite floor has been proposed; 6) The short-term ultimate and serviceability limit state behaviour of timber-concrete composite floor beams under collapse load has been investigated; 7) The long-term behaviour of chosen connections defined by their creep coefficient has been determined; 8) The long-term behaviour of timber-concrete composite floor beams under sustained load at serviceability limit state condition has been investigated; and 9) Design example and span tables for semi-prefabricated timber-concrete composite floors that satisfy both the ultimate and serviceability limit state in the short- and long-term using the gamma-method have been developed.
6

Análise numérica de vigas mistas de madeira e concreto em situação de incêndio / Numerical analysis of timber-concrete composite beams in fire situation

Fernandes, Felipi Pablo Damasceno 10 May 2018 (has links)
As vigas mistas de madeira e concreto são formadas pela união de vigas de madeira a lajes de concreto armado por meio de conectores de cisalhamento. Quando os pisos mistos de madeira e concreto são comparados aos pisos construídos unicamente em madeira ou àqueles confeccionados somente em concreto armado é possível destacar algumas vantagens, incluindo o bom desempenho em situações de incêndio. Os elementos estruturais quando submetidos a ações térmicas sofrem redução de resistência e rigidez, sendo, desta forma, necessário conhecer as modificações sofridas por cada um de seus componentes, que para o caso estudado são: a madeira, o concreto e os conectores de cisalhamento. Desta forma, foi elaborada uma estratégia de modelagem numérica para o estudo de vigas mistas de madeira e concreto em situação de incêndio, utilizando o programa computacional ABAQUS, o qual é baseado no método dos elementos finitos. Em uma primeira etapa da pesquisa foram realizadas modelagens numéricas de vigas de madeira e mistas de madeira e concreto em temperatura ambiente, encontrando-se boa correlação entre as curvas força versus deslocamento no meio do vão obtida numericamente e por meio de ensaios disponíveis na literatura. Em seguida procedeu-se a calibração das propriedades térmicas e mecânicas da madeira brasileira, alcançando-se resultados numéricos próximos aos experimentais, seja em relação às temperaturas do elemento analisado seja em relação à curva de deslocamento vertical em função do tempo de incêndio. Por fim, a estratégia de modelagem termoestrutural desenvolvida para a viga mista de madeira e concreto forneceu curva de deslocamento vertical em função do tempo de incêndio semelhante à curva obtida por meio de modelo analítico disponível na literatura. Por meio do modelo elaborado foi possível observar que a elevação do nível de carregamento reduz o tempo de resistência do elemento estrutural e que a proteção térmica do concreto é essencial para aumentar o tempo até a ruptura da viga. / Timber-concrete composite beams are formed by the union of timber beams to reinforced concrete slabs through of shear connectors. When timber-concrete composite floors are compared to timber floors or reinforced concrete floors it is possible to highlight some advantages, including good performance in fire situations. When subjected to thermal actions, structural elements suffer strength and stiffness reductions, being, therefore, necessary to know the modifications suffered by each of its components, which for the case studied are: timber, concrete and shear connectors. Thus, it is developed a numerical modeling strategy using the computational program ABAQUS, which is based on the finite element method, for the study of timber-concrete composite beams in fire situation. In the first stage of the research it was carried out a numerical modeling of timber beam and timber-concrete composite beam at room temperature, finding good correlation between the force versus displacement curves in the middle of the span obtained numerically and through tests available in the literature. Then, it was carried out the calibration of the thermal and mechanical properties of the Brazilian wood, reaching numerical results close to the experimental ones, either in relation to the temperatures of the analyzed element or in relation to the vertical displacement curve as a function of the fire time. Finally, the thermo-structural modeling strategy developed for the timber-concrete composite beam provided a vertical displacement curve as a function of the fire time similar to the curve obtained through an analytical model available in the literature. Through of the elaborated model it was possible to observe that the load level increase reduces the resistance fire time of the structural element and that the thermal protection of the concrete is essential to increase the rupture time of the beam.
7

Análise numérica de vigas mistas de madeira e concreto em situação de incêndio / Numerical analysis of timber-concrete composite beams in fire situation

Felipi Pablo Damasceno Fernandes 10 May 2018 (has links)
As vigas mistas de madeira e concreto são formadas pela união de vigas de madeira a lajes de concreto armado por meio de conectores de cisalhamento. Quando os pisos mistos de madeira e concreto são comparados aos pisos construídos unicamente em madeira ou àqueles confeccionados somente em concreto armado é possível destacar algumas vantagens, incluindo o bom desempenho em situações de incêndio. Os elementos estruturais quando submetidos a ações térmicas sofrem redução de resistência e rigidez, sendo, desta forma, necessário conhecer as modificações sofridas por cada um de seus componentes, que para o caso estudado são: a madeira, o concreto e os conectores de cisalhamento. Desta forma, foi elaborada uma estratégia de modelagem numérica para o estudo de vigas mistas de madeira e concreto em situação de incêndio, utilizando o programa computacional ABAQUS, o qual é baseado no método dos elementos finitos. Em uma primeira etapa da pesquisa foram realizadas modelagens numéricas de vigas de madeira e mistas de madeira e concreto em temperatura ambiente, encontrando-se boa correlação entre as curvas força versus deslocamento no meio do vão obtida numericamente e por meio de ensaios disponíveis na literatura. Em seguida procedeu-se a calibração das propriedades térmicas e mecânicas da madeira brasileira, alcançando-se resultados numéricos próximos aos experimentais, seja em relação às temperaturas do elemento analisado seja em relação à curva de deslocamento vertical em função do tempo de incêndio. Por fim, a estratégia de modelagem termoestrutural desenvolvida para a viga mista de madeira e concreto forneceu curva de deslocamento vertical em função do tempo de incêndio semelhante à curva obtida por meio de modelo analítico disponível na literatura. Por meio do modelo elaborado foi possível observar que a elevação do nível de carregamento reduz o tempo de resistência do elemento estrutural e que a proteção térmica do concreto é essencial para aumentar o tempo até a ruptura da viga. / Timber-concrete composite beams are formed by the union of timber beams to reinforced concrete slabs through of shear connectors. When timber-concrete composite floors are compared to timber floors or reinforced concrete floors it is possible to highlight some advantages, including good performance in fire situations. When subjected to thermal actions, structural elements suffer strength and stiffness reductions, being, therefore, necessary to know the modifications suffered by each of its components, which for the case studied are: timber, concrete and shear connectors. Thus, it is developed a numerical modeling strategy using the computational program ABAQUS, which is based on the finite element method, for the study of timber-concrete composite beams in fire situation. In the first stage of the research it was carried out a numerical modeling of timber beam and timber-concrete composite beam at room temperature, finding good correlation between the force versus displacement curves in the middle of the span obtained numerically and through tests available in the literature. Then, it was carried out the calibration of the thermal and mechanical properties of the Brazilian wood, reaching numerical results close to the experimental ones, either in relation to the temperatures of the analyzed element or in relation to the vertical displacement curve as a function of the fire time. Finally, the thermo-structural modeling strategy developed for the timber-concrete composite beam provided a vertical displacement curve as a function of the fire time similar to the curve obtained through an analytical model available in the literature. Through of the elaborated model it was possible to observe that the load level increase reduces the resistance fire time of the structural element and that the thermal protection of the concrete is essential to increase the rupture time of the beam.
8

Samverkansbjälklag : En studie om KL-platta med samverkande betong

Nilsson, Ida, Svensson, Dennis January 2020 (has links)
Purpose: The purpose of this study was to investigate whether timber-concrete composite (TCC) floors made of a CLT-deck and casted concrete could be used as a method for increasing the use of wood as a building material. Method: The methods used in this degree project were a literature study, in which a number of laws of construction and different connector systems were studied, as well as an experiment consisting of bending tests on CLT-decks with casted concrete where SFS VB-screws were used as shear connectors. Results: The TCC-beams in the experiment behaved as expected and went to bending failure. The beams displayed an almost invisible slip between the materials despite the low composite action of 40,2 %. In addition, the beams had a higher bending stiffness on average than CLT-beams of the same height would have. Conclusions: Compared to floors made entirely of wood, TCC-floors with CLT add extra mass, stiffness, and better acoustic properties to the construction while maintaining a low floor height. The three main types of connectors used in TCC floors are mechanical, notched and glued-in connectors, where the latter two generates higher composite action and stiffness. Adhesive connection is another method with great potential, but there is still more research needed for this type of connection to be used.
9

Behaviour of timber-concrete composite beam interconnection with inclined screws / Kompozitinių medinių-betoninių sijų tarpsluoksnio įžambinės medsraigtinės jungties elgsena

Kavaliauskas, Saulius 17 March 2010 (has links)
The dissertation investigates the behaviour of timber-concrete connections with inclined screws – the load carrying capacity and deformability. The essen¬tial objects of investigation are the load carrying capacity of inclined screws; the modules of connection slip deformation, and the mechanical properties of mate¬rials and ware of which the connection is made. The load-carrying capacity of the connection depends on the properties of the material of connected member and the connectors, on which depends the strength and stiffness of the composite member. The main aim of dissertation is to create the connection load carrying capacity predicting model, based on the more realistic behaviour of the material of connected members; to prepare the simplified approach for load-carrying capacity predicting model for composite timber-concrete connections within at any angle in respect to timber grain in¬clined crews. The paper approaches a few major tasks such as the choice of suitable load-carrying capacity predicting base model; preparing it to composite timber-con¬crete connections with inclined screws; the experimental investigation of con¬nection with inclined screws under long- and short term loading; the experi¬mental investigation of properties of connected materials and type of used con¬nectors; the evaluation of created predictive model based on results also of other researchers experimental investigations. / Disertacijoje nagrinėjama kompozitinės medinės-betoninės jungties su įžambiai šlyties plokštumai orientuotais medsraigčiais elgsena – laikomoji galia ir deformacinės savybės. Pagrindiniai tyrimų objektai yra įžambiai medienos pluoštui orientuotų medsraigčių laikomoji galia, slinkties deformacijų moduliai ir mechaninės jungtį sudarančių elementų savybės, veikiančios jungties elgseną. Nuo medsraigčio ašies posvyrio kampo, deformacinių po medsraigčiu glemžiamos ir ištraukiamos medienos ir lenkiamo medsraigčio savybių priklauso ir jungties irties pobūdis, laikomoji galia ir slinkties deformacijų moduliai, o nuo pastarųjų – kompozitinio elemento stiprumas ir standumas. Pagrindinis disertacijos tikslas yra sukurti skaičiavimo modelį tokių jungčių laikomajai galiai nuspėti, kuo tiksliau atsižvelgiant į medžiagų ir elementų mechanines savybes; pateikti supaprastintą skaičiuojamąjį modelį, skirtą bet kokiu kampu medienos pluošto atžvilgiu įsriegtų medsraigčių laikomajai galiai nuspėti. Darbe sprendžiami keli pagrindiniai uždaviniai: tinkamo pamatinio jungties laikomąją galią vertinančio skaičiuojamojo modelio parinkimas, jo pritaikymas įžambiai medienos pluoštui orientuotiems medsraigčiams; trumpalaikis ir ilgalaikis eksperimentinis įžambinės medsraigtinės jungties laikomosios galios tyrimas ir vertinimas; kitų autorių eksperimentinių rezultatų vertinimas sukurtajam jungties laikomąją galią vertinančiam modeliui pagrįsti.
10

Kompozitinių medinių-betoninių sijų tarpsluoksnio įžambinės medsraigtinės jungties elgsena / Behaviour of timber-concrete composite beam interconnection with inclined screws

Kavaliauskas, Saulius 17 March 2010 (has links)
Disertacijoje nagrinėjama kompozitinės medinės-betoninės jungties su įžambiai šlyties plokštumai orientuotais medsraigčiais elgsena – laikomoji galia ir deformacinės savybės. Pagrindiniai tyrimų objektai yra įžambiai medienos pluoštui orientuotų medsraigčių laikomoji galia, slinkties deformacijų moduliai ir mechaninės jungtį sudarančių elementų savybės, veikiančios jungties elgseną. Nuo medsraigčio ašies posvyrio kampo, deformacinių po medsraigčiu glemžiamos ir ištraukiamos medienos ir lenkiamo medsraigčio savybių priklauso ir jungties irties pobūdis, laikomoji galia ir slinkties deformacijų moduliai, o nuo pastarųjų – kompozitinio elemento stiprumas ir standumas. Pagrindinis disertacijos tikslas yra sukurti skaičiavimo modelį tokių jungčių laikomajai galiai nuspėti, kuo tiksliau atsižvelgiant į medžiagų ir elementų mechanines savybes; pateikti supaprastintą skaičiuojamąjį modelį, skirtą bet kokiu kampu medienos pluošto atžvilgiu įsriegtų medsraigčių laikomajai galiai nuspėti. Darbe sprendžiami keli pagrindiniai uždaviniai: tinkamo pamatinio jungties laikomąją galią vertinančio skaičiuojamojo modelio parinkimas, jo pritaikymas įžambiai medienos pluoštui orientuotiems medsraigčiams; trumpalaikis ir ilgalaikis eksperimentinis įžambinės medsraigtinės jungties laikomosios galios tyrimas ir vertinimas; kitų autorių eksperimentinių rezultatų vertinimas sukurtajam jungties laikomąją galią vertinančiam modeliui pagrįsti. / The dissertation investigates the behaviour of timber-concrete connections with inclined screws – the load carrying capacity and deformability. The essen¬tial objects of investigation are the load carrying capacity of inclined screws; the modules of connection slip deformation, and the mechanical properties of mate¬rials and ware of which the connection is made. The load-carrying capacity of the connection depends on the properties of the material of connected member and the connectors, on which depends the strength and stiffness of the composite member. The main aim of dissertation is to create the connection load carrying capacity predicting model, based on the more realistic behaviour of the material of connected members; to prepare the simplified approach for load-carrying capacity predicting model for composite timber-concrete connections within at any angle in respect to timber grain in¬clined crews. The paper approaches a few major tasks such as the choice of suitable load-carrying capacity predicting base model; preparing it to composite timber-con¬crete connections with inclined screws; the experimental investigation of con¬nection with inclined screws under long- and short term loading; the experi¬mental investigation of properties of connected materials and type of used con¬nectors; the evaluation of created predictive model based on results also of other researchers experimental investigations.

Page generated in 0.0564 seconds