• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 20
  • 20
  • 11
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Strong Stability Preserving Hermite-Birkhoff Time Discretization Methods

Nguyen, Thu Huong 06 November 2012 (has links)
The main goal of the thesis is to construct explicit, s-stage, strong-stability-preserving (SSP) Hermite–Birkhoff (HB) time discretization methods of order p with nonnegative coefficients for the integration of hyperbolic conservation laws. The Shu–Osher form and the canonical Shu–Osher form by means of the vector formulation for SSP Runge–Kutta (RK) methods are extended to SSP HB methods. The SSP coefficients of k-step, s-stage methods of order p, HB(k,s,p), as combinations of k-step methods of order (p − 3) with s-stage explicit RK methods of order 4, and k-step methods of order (p-4) with s-stage explicit RK methods of order 5, respectively, for s = 4, 5,..., 10 and p = 4, 5,..., 12, are constructed and compared with other methods. The good efficiency gains of the new, optimal, SSP HB methods over other SSP methods, such as Huang’s hybrid methods and RK methods, are numerically shown by means of their effective SSP coefficients and largest effective CFL numbers. The formulae of these new, optimal methods are presented in their Shu–Osher form.
2

Strong Stability Preserving Hermite-Birkhoff Time Discretization Methods

Nguyen, Thu Huong 06 November 2012 (has links)
The main goal of the thesis is to construct explicit, s-stage, strong-stability-preserving (SSP) Hermite–Birkhoff (HB) time discretization methods of order p with nonnegative coefficients for the integration of hyperbolic conservation laws. The Shu–Osher form and the canonical Shu–Osher form by means of the vector formulation for SSP Runge–Kutta (RK) methods are extended to SSP HB methods. The SSP coefficients of k-step, s-stage methods of order p, HB(k,s,p), as combinations of k-step methods of order (p − 3) with s-stage explicit RK methods of order 4, and k-step methods of order (p-4) with s-stage explicit RK methods of order 5, respectively, for s = 4, 5,..., 10 and p = 4, 5,..., 12, are constructed and compared with other methods. The good efficiency gains of the new, optimal, SSP HB methods over other SSP methods, such as Huang’s hybrid methods and RK methods, are numerically shown by means of their effective SSP coefficients and largest effective CFL numbers. The formulae of these new, optimal methods are presented in their Shu–Osher form.
3

Locally Mass-Conservative Method With Discontinuous Galerkin In Time For Solving Miscible Displacement Equations Under Low Regularity

Li, Jizhou 16 September 2013 (has links)
The miscible displacement equations provide the mathematical model for simulating the displacement of a mixture of oil and miscible fluid in underground reservoirs during the Enhance Oil Recovery(EOR) process. In this thesis, I propose a stable numerical scheme combining a mixed finite element method and space-time discontinuous Galerkin method for solving miscible displacement equations under low regularity assumption. Convergence of the discrete solution is investigated using a compactness theorem for functions that are discontinuous in space and time. Numerical experiments illustrate that the rate of convergence is improved by using a high order time stepping method. For petroleum engineers, it is essential to compute finely detailed fluid profiles in order to design efficient recovery procedure thereby increase production in the EOR process. The method I propose takes advantage of both high order time approximation and discontinuous Galerkin method in space and is capable of providing accurate numerical solutions to assist in increasing the production rate of the miscible displacement oil recovery process.
4

Nonlinearly consistent schemes for coupled problems in reactor analysis

Mahadevan, Vijay Subramaniam 25 April 2007 (has links)
Conventional coupling paradigms used nowadays to couple various physics components in reactor analysis problems can be inconsistent in their treatment of the nonlinear terms. This leads to usage of smaller time steps to maintain stability and accuracy requirements thereby increasing the computational time. These inconsistencies can be overcome using better approximations to the nonlinear operator in a time stepping strategy to regain the lost accuracy. This research aims at finding remedies that provide consistent coupling and time stepping strategies with good stability properties and higher orders of accuracy. Consistent coupling strategies, namely predictive and accelerated methods, were introduced for several reactor transient accident problems and the performance was analyzed for a 0-D and 1-D model. The results indicate that consistent approximations can be made to enhance the overall accuracy in conventional codes with such simple nonintrusive techniques. A detailed analysis of a monoblock coupling strategy using time adaptation was also implemented for several higher order Implicit Runge-Kutta (IRK) schemes. The conclusion from the results indicate that adaptive time stepping provided better accuracy and reliability in the solution fields than constant stepping methods even during discontinuities in the transients. Also, the computational and the total memory requirements for such schemes make them attractive alternatives to be used for conventional coupling codes.
5

High Order Finite Difference Methods in Space and Time

Kress, Wendy January 2003 (has links)
In this thesis, high order accurate discretization schemes for partial differential equations are investigated. In the first paper, the linearized two-dimensional Navier-Stokes equations are considered. A special formulation of the boundary conditions is used and estimates for the solution to the continuous problem in terms of the boundary conditions are derived using a normal mode analysis. Similar estimates are achieved for the discretized equations. For the discretization, a second order finite difference scheme on a staggered mesh is used. In Paper II, the analysis for the second order scheme is used to develop a fourth order scheme for the fully nonlinear Navier-Stokes equations. The fully nonlinear incompressible Navier-Stokes equations in two space dimensions are considered on an orthogonal curvilinear grid. Numerical tests are performed with a fourth order accurate Padé type spatial finite difference scheme and a semi-implicit BDF2 scheme in time. In Papers III-V, a class of high order accurate time-discretization schemes based on the deferred correction principle is investigated. The deferred correction principle is based on iteratively eliminating lower order terms in the local truncation error, using previously calculated solutions, in each iteration obtaining more accurate solutions. It is proven that the schemes are unconditionally stable and stability estimates are given using the energy method. Error estimates and smoothness requirements are derived. Special attention is given to the implementation of the boundary conditions for PDE. The scheme is applied to a series of numerical problems, confirming the theoretical results. In the sixth paper, a time-compact fourth order accurate time discretization for the one- and two-dimensional wave equation is considered. Unconditional stability is established and fourth order accuracy is numerically verified. The scheme is applied to a two-dimensional wave propagation problem with discontinuous coefficients.
6

Strong Stability Preserving Hermite-Birkhoff Time Discretization Methods

Nguyen, Thu Huong January 2012 (has links)
The main goal of the thesis is to construct explicit, s-stage, strong-stability-preserving (SSP) Hermite–Birkhoff (HB) time discretization methods of order p with nonnegative coefficients for the integration of hyperbolic conservation laws. The Shu–Osher form and the canonical Shu–Osher form by means of the vector formulation for SSP Runge–Kutta (RK) methods are extended to SSP HB methods. The SSP coefficients of k-step, s-stage methods of order p, HB(k,s,p), as combinations of k-step methods of order (p − 3) with s-stage explicit RK methods of order 4, and k-step methods of order (p-4) with s-stage explicit RK methods of order 5, respectively, for s = 4, 5,..., 10 and p = 4, 5,..., 12, are constructed and compared with other methods. The good efficiency gains of the new, optimal, SSP HB methods over other SSP methods, such as Huang’s hybrid methods and RK methods, are numerically shown by means of their effective SSP coefficients and largest effective CFL numbers. The formulae of these new, optimal methods are presented in their Shu–Osher form.
7

A Class of Contractivity Preserving Hermite-Birkhoff-Taylor High Order Time Discretization Methods

Karouma, Abdulrahman January 2015 (has links)
In this thesis, we study the contractivity preserving, high order, time discretization methods for solving non-stiff ordinary differential equations. We construct a class of one-step, explicit, contractivity preserving, multi-stage, multi-derivative, Hermite-Birkhoff-Taylor methods of order p=5,6, ..., 15, that we denote by CPHBT, with nonnegative coefficients by casting s-stage Runge-Kutta methods of order 4 and 5 with Taylor methods of order p-3 and p-4, respectively. The constructed CPHBT methods are implemented using an efficient variable step algorithm and are compared to other well-known methods on a variety of initial value problems. The results show that CPHBT methods have larger regions of absolute stability, require less function evaluations and hence they require less CPU time to achieve the same accuracy requirements as other methods in the literature. Also, we show that the contractivity preserving property of CPHBT is very efficient in suppressing the effect of the propagation of discretization errors when a long-term integration of a standard N-body problem is considered. The formulae of 49 CPHBT methods of various orders are provided in Butcher form.
8

Etudes théorique et numérique de quelques problèmes d'écoulements et de chaleur hyperbolique / Theorical and numerical studies of non isothermal non stationary fluid flows within hyperbolic Cattaneo's heat law

Boussetouan, Imane 10 December 2012 (has links)
Ce travail de thèse a pour but d'étudier des écoulements non stationnaires de fluides incompressibles Newtoniens et non isothermes. Le problème est décrit par les lois de conservation de la masse, de la quantité de mouvement et de l'énergie. Nous nous intéressons au couplage entre le système de Navier-Stokes et l’équation de la chaleur hyperbolique (le résultat de la combinaison entre la loi de conservation d'énergie et la loi de Cattaneo). Cette dernière est une modification de la loi de Fourier utilisée habituellement, elle permet de surmonter « le paradoxe de la chaleur » et d'obtenir une description plus précise de la propagation de la chaleur. Le système couplé est un problème hyperbolique-parabolique dont la viscosité dépend de la température, alors que la capacité thermique et le terme de dissipation dépendent de la vitesse. Afin d’obtenir un résultat d'existence de solutions du problème couplé, nous démontrons d'abord l'existence et l'unicité de la solution du problème hyperbolique puis nous introduisons une discrétisation en temps et nous étudions la convergence des solutions approchées vers celles du problème original. Dans un deuxième temps nous étudions l'existence et l'unicité de la solution du système de Navier-Stokes muni des conditions aux limites de type Tresca puis de type Coulomb en dimension 2 et 3. Dans le chapitre 3, nous proposons une discrétisation en temps du problème d'écoulement dans le cas de la condition au limite de type Tresca et nous établissons la convergence des solutions approchées. Le dernier chapitre de ce mémoire est consacré à l'étude du problème couplé dans le cas de conditions aux limites de type Tresca. L'existence d'une solution est obtenue par un argument théorique de point fixe en dimension 2 et également par une méthode de discrétisation en temps qui conduit à résoudre sur chaque sous intervalle de temps un problème découplé pour la vitesse et la pression d'une part et la température d'autre part / The main objective of this thesis is to study nonstationary flows of incompressible Newtonian and non isothermal fluids. The problem is described by the laws of conservation of mass, momentum and energy. We consider the coupling between the Navier-Stokes system and the hyperbolic heat equation (the result of combination between the law of conservation of energy and the Cattaneo’s law). This one is a modification of the commonly used Fourier's law, it overcomes "the heat paradox" and gives a more accurate description of heat propagation. The coupled system is an hyperbolic-parabolic problem where the viscosity depends on the temperature but the thermal capacity and the dissipative term depend on the velocity. To obtain an existence result for the coupled system, we first prove the existence and uniqueness of the solution of the hyperbolic problem then we introduce a time discretization and we study the convergence of the approximate solutions to those of the original problem. In the second chapter, we study the existence and uniqueness of the solution of Navier-Stokes system with Tresca or Coulomb boundary conditions in dimension 2 and 3. In the third chapter, we propose a time discretization of the flow problem in the case of Tresca boundary conditions and we establish the convergence of the approximate solutions. The last chapter is devoted to the study of the coupled problem in the case of Tresca free boundary conditions. The existence of a solution is obtained by a theoretical argument (fixed-point theorem) in dimension 2 and also by a method of time discretization leading, on each time subinterval, to a decoupled problem for the velocity and pressure of a hand and the temperature of the other hand
9

Space-Time Discretization of Elasto-Acoustic Wave Equation in Polynomial Trefftz-DG Bases / Discrétisation Espace-Temps d'Équations d'Ondes Élasto-Acoustiques dans des Bases Trefftz-DG Polynomiales

Shishenina, Elvira 07 December 2018 (has links)
Les méthodes d'éléments finis de type Galerkine discontinu (DG FEM) ont démontré précision et efficacité pour résoudre des problèmes d'ondes dans des milieux complexes. Cependant, elles nécessitent un très grand nombre de degrés de liberté, ce qui augmente leur coût de calcul en comparaison du coût des méthodes d'éléments finis continus.Parmi les différentes approches variationnelles pour résoudre les problèmes aux limites, se distingue une famille particulière, basée sur l'utilisation de fonctions tests qui sont des solutions locales exactes des équations à résoudre. L'idée vient de E.Trefftz en 1926 et a depuis été largement développée et généralisée. Les méthodes variationnelles de type Trefftz-DG appliquées aux problèmes d'ondes se réduisent à des intégrales de surface, ce qui devrait contribuer à réduire les coûts de calcul.Les approches de type Trefftz ont été largement développées pour les problèmes harmoniques, mais leur utilisation pour des simulations en domaine transitoire est encore limitée. Quand elles sont appliquées dans le domaine temporel, les méthodes de Trefftz utilisent des maillages qui recouvrent le domaine espace-temps. C'est une des paraticularités de ces méthodes. En effet, les méthodes DG standards conduisent à la construction d'un système semi-discret d'équations différentielles ordinaires en temps qu'on intègre avec un schéma en temps explicite. Mais les méthodes de Trefftz-DG appliquées aux problèmes d'ondes conduisent à résoudre une matrice globale, contenant la discrétisation en espace et en temps, qui est de grande taille et creuse. Cette particularité gêne considérablement le déploiement de cette technologie pour résoudre des problèmes industriels.Dans ce travail, nous développons un environnement Tre#tz-DG pour résoudre des problèmes d'ondes mécaniques, y compris les équations couplées de l'élasto-acoustique. Nous prouvons que les formulations obtenues sont bien posées et nous considérons la difficulté d'inverser la matrice globale en construisant un inverse approché obtenu à partir de la décomposition de la matrice globale en une matrice diagonale par blocs. Cette idée permet de réduire les coûts de calcul mais sa précision est limitée à de petits domaines de calcul. Etant données les limitations de la méthode, nous nous sommes intéressés au potentiel du "Tent Pitcher", en suivant les travaux récents de Gopalakrishnan et al. Il s'agit de construire un maillage espace-temps composé de macro-éléments qui peuvent être traités indépendamment en faisant une hypothèse de causalité. Nous avons obtenu des résultats préliminaires très encourageants qui illustrent bien l'intérêt du Tent Pitcher, en particulier quand il est couplé à une méthode de Trefftz-DG formulée à partir d'intégrales de surface seulement. Dans ce cas, le maillage espace-temps est composé d'éléments qui sont au plus de dimension 3. Il est aussi important de noter que ce cadre se prête à l'utilisation de pas de temps locaux ce qui est un plus pour gagner en précision avec des coûts de calcul réduits. / Discontinuous Finite Element Methods (DG FEM) have proven flexibility and accuracy for solving wave problems in complex media. However, they require a large number of degrees of freedom, which increases the corresponding computational cost compared with that of continuous finite element methods. Among the different variational approaches to solve boundary value problems, there exists a particular family of methods, based on the use of trial functions in the form of exact local solutions of the governing equations. The idea was first proposed by Trefftz in 1926, and since then it has been further developed and generalized. A Trefftz-DG variational formulation applied to wave problems reduces to surface integrals that should contribute to decreasing the computational costs.Trefftz-type approaches have been widely used for time-harmonic problems, while their implementation for time-dependent simulations is still limited. The feature of Trefftz-DG methods applied to time-dependent problems is in the use of space-time meshes. Indeed, standard DG methods lead to the construction of a semi-discrete system of ordinary differential equations in time which are integrated by using an appropriate scheme. But Trefftz-DG methods applied to wave problems lead to a global matrix including time and space discretizations which is huge and sparse. This significantly hampers the deployment of this technology for solving industrial problems.In this work, we develop a Trefftz-DG framework for solving mechanical wave problems including elasto-acoustic equations. We prove that the corresponding formulations are well-posed and we address the issue of solving the global matrix by constructing an approximate inverse obtained from the decomposition of the global matrix into a block-diagonal one. The inversion is then justified under a CFL-type condition. This idea allows for reducing the computational costs but its accuracy is limited to small computational domains. According to the limitations of the method, we have investigated the potential of Tent Pitcher algorithms following the recent works of Gopalakrishnan et al. It consists in constructing a space-time mesh made of patches that can be solved independently under a causality constraint. We have obtained very promising numerical results illustrating the potential of Tent Pitcher in particular when coupled with a Trefftz-DG method involving only surface terms. In this way, the space-time mesh is composed of elements which are 3D objects at most. It is also worth noting that this framework naturally allows for local time-stepping which is a plus to increase the accuracy while decreasing the computational burden.
10

Développement d'un outil de pré dimensionnement de structures sandwich soumises à des impacts à vitesse intermédiaire

Mavel, Sébastien 04 October 2012 (has links)
Dans le cadre du développement d’un outil semi-analytique de pré-dimensionnement de structures sandwich soumises à des impacts à vitesse intermédiaire (<20m.s-1), nous proposons la détermination d’une solution efficace, basée sur les séries de Fourier avec des conditions aux limites générales. Les équations gouvernantes qui permettent de décrire la réponse transitoire élastique de plaques stratifiées orthotropes avec prise en compte d’une loi non linéaire de contact hertzien sont développées en utilisant un schéma de discrétisation temporelle explicite. Pour les conditions aux limites générales, la solution en séries de Fourier est complétée par une série mixte de polynômes-cosinus, qui permet d’aboutir à la solution, tout en permettant à la série de satisfaire les équations d’équilibres ainsi que les conditions limites, de façon exacte en augmentant le nombre de termes de la série. Afin de tenir compte des phénomènes physiques locaux lors de l’impact de structure sandwich, la plasticité et la rupture locale de la plaque anti-perforation sont introduites dans une formulation modifiée du contact de Hertz et l’écrasement de l’âme du sandwich est ajouté dans l’équation d’équilibre du projectile. Les solutions obtenues par cette méthode sont en accord avec les résultats par modélisation éléments finis de plaques composites multicouches impactées par un projectile. Une campagne expérimentale d’impact de type « box corner » sur des plaques sandwich de 1m², a servi de référence expérimentale et permis la validation de ce modèle complet. Finalement, le couplage de ce modèle à un optimiseur basé sur les techniques de plans d’expériences et de surfaces de réponses (métamodèles), nous a permis de choisir la meilleure structure d’absorption d’énergie (matériaux et géométrie) pour des structures plaques soumises à des impacts de 7kJ. Un test sur un véhicule réel avec la configuration structurelle choisie, nous a permis de valider l’outil final de pré-dimensionnement et de confirmer la qualité des résultats numériques obtenus par ce modèle semi-analytique. / A semi-analytical tool for the design of sandwich structures under intermediate speed loadings impact (<20m.s-1) is proposed by using an efficient solution based on the Fourier series with general boundary conditions. The governing equations, which describe dynamic elastic response of orthotropic laminates and include the non linear Hertzian contact law, are derived by means of explicit time discretization. For the general boundary conditions, the Fourier series solution is supplemented with mixed polynomial-cosine series, which allows derivation of the classical solution by letting the series satisfy exactly the governing differential equation and the boundary conditions with increased values of terms series. To take local physical behavior during sandwich structure impact into account, local plasticity and failure of the protection plate are introduced in a modified form of the Hertzian contact and the compression of the foam is added in the equilibrium equation of the projectile. The solutions obtained with this new method are close to those found by finite element simulations for impact on multilayers composite structures. An experimental campaign with one square meter sandwich structures impacted by corner box projectile is then used to validate the whole model. Finally, the best sandwich structure for energy absorption under a 7kJ impact (material and geometry) is chosen by coupling the model with an optimizer based on the metamodel approach. This solution is applied to a real vehicle and the results confirm the quality of the design of the structure.

Page generated in 0.1513 seconds