• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Minimum description length, regularisation and multi-modal data

Van der Rest, John C. January 1995 (has links)
Conventional feed forward Neural Networks have used the sum-of-squares cost function for training. A new cost function is presented here with a description length interpretation based on Rissanen's Minimum Description Length principle. It is a heuristic that has a rough interpretation as the number of data points fit by the model. Not concerned with finding optimal descriptions, the cost function prefers to form minimum descriptions in a naive way for computational convenience. The cost function is called the Naive Description Length cost function. Finding minimum description models will be shown to be closely related to the identification of clusters in the data. As a consequence the minimum of this cost function approximates the most probable mode of the data rather than the sum-of-squares cost function that approximates the mean. The new cost function is shown to provide information about the structure of the data. This is done by inspecting the dependence of the error to the amount of regularisation. This structure provides a method of selecting regularisation parameters as an alternative or supplement to Bayesian methods. The new cost function is tested on a number of multi-valued problems such as a simple inverse kinematics problem. It is also tested on a number of classification and regression problems. The mode-seeking property of this cost function is shown to improve prediction in time series problems. Description length principles are used in a similar fashion to derive a regulariser to control network complexity.
2

Self-Learning Prediciton System for Optimisation of Workload Managememt in a Mainframe Operating System

Bensch, Michael, Brugger, Dominik, Rosenstiel, Wolfgang, Bogdan, Martin, Spruth, Wilhelm 06 November 2018 (has links)
We present a framework for extraction and prediction of online workload data from a workload manager of a mainframe operating system. To boost overall system performance, the prediction will be corporated into the workload manager to take preventive action before a bottleneck develops. Model and feature selection automatically create a prediction model based on given training data, thereby keeping the system flexible. We tailor data extraction, preprocessing and training to this specific task, keeping in mind the nonstationarity of business processes. Using error measures suited to our task, we show that our approach is promising. To conclude, we discuss our first results and give an outlook on future work.

Page generated in 0.1691 seconds