• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 12
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 62
  • 62
  • 22
  • 19
  • 17
  • 13
  • 12
  • 11
  • 10
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Implementation of Collection Tree Protocol over WirelessHART Data-Link

Koneri, Kiran Kumar January 2011 (has links)
Wireless Sensor Networks (WSNs) are ad-hoc wireless networks for small form-factor embedded nodes with limited memory, processing and energy resources. Certain applications, like industrial automation and real-time process monitoring requires time synchronized reliable network protocol. Current work for WSNs provides either time synchronized with low reliability (WirelessHART) or reliable network without time synchronization (Collection Tree Protocol). The Collection Tree Protocol (CTP) provides the reliability from 94.7% to 99.9% for CSMA-CA based MAC layer. This paper addresses channel hopping, a class of frequency diverse communication protocol in which subsequent packets are sent over different frequency channels. Channel hopping combats external interference and persistent multipath fading, two of the main causes of failure along a communication link. Channel hopping technique leads to a high reliable and efficient protocol which is specified by HART Communication Foundation and named as WirelessHART. WirelessHART Data-Link layer designed based on TDMA and CSMA-CA mechanism. By implementing the CTP over WirelessHART Data-Link layer, the reliability of the network protocol can be improved compare to actual CTP standard implementation. This thesis describes the design and implementation of Collection Tree Protocol over WirelessHART Data-Link layer. The implementation is done using TinyOS, nesC programming language using Crossbow TelosB CC2420 radio chip nodes. The results and experiments show the evaluation of the system prototype.
22

Time Synchronization In Measurement Networks

Kaya, Zahit Evren 01 March 2008 (has links) (PDF)
AMR (Automatic Measurement Reading) applications usually require measurement data to be collected from separate locations. In order to combine the data retrieved from separate sources into a meaningful result, all sources should share a common time sense. Therefore, it is necessary to implement a synchronization scheme in measurement networks. In this thesis, a synchronization scheme which combines GPS (Global Positioning System) and two high accuracy WSN (Wireless Sensor Network) time synchronization algorithms will be proposed and evaluated. The synchronization accuracy of the proposed method is compared to the accuracy of NTP (Network Time Protocol) by simulation. This research work is fully supported by the Public Research Grant Committee (KAMAG) of TUBiTAK within the scope of National Power Quality Project of Turkey with the project No: 105G129.
23

Hardware acceleration for conservative parallel discrete event simulation on multi-core systems

Lynch, Elizabeth Whitaker 07 February 2011 (has links)
Multi-core architectures are becoming more common and core counts continue to increase. There are six- and eight-core chips currently in production, such as Intel Gulftown, and many-core chips with dozens of cores, such as the Intel Teraflops 80-core chip, are projected in the next five years. However, adding more cores often does not improve the performance of applications. It would be desirable to take advantage of the multi-core environment to speed up parallel discrete event simulation. The current bottleneck for many parallel simulations is time synchronization. This is especially true for simulations of wireless networks and on-chip networks, which have low lookahead. Message passing is also a common simulation bottleneck. In order to address the issue of time synchronization, we have designed hardware at a functional level that performs the time synchronization for parallel discrete event simulation asynchronously and in just a few clock cycles, eliminating the need for global communication with message passing or lock contention for shared memory. This hardware, the Global Synchronization Unit, consists of 3 register files, each the size of the number of cores, and is accessed using 5 new atomic instructions. In order to reduce the simulation overhead from message passing, we have also designed two independent pieces of hardware at a functional level, the Atomic Shared Heap and Atomic Message Passing, which can be used to perform lock-free, zero-copy message passing on a multi-core system. The impact of these specialized hardware units on the performance of parallel discrete event simulation is assessed and compared to traditional shared-memory techniques.
24

Laiko ir duomenų sinchronizavimo metodai rungtynių monitoringo sistemose / Time and data synchronization methods in competition monitoring systems

Kerys, Julijus 16 January 2005 (has links)
Information synchronization problems are analyzed in this thesis. Two aspects are being surveyed – clock synchronization, algorithms and their use, and data synchronization and maintaining the functionality of software at the times, when connection with database is broken. Existing products, their uses, cons and pros are overviewed. There are suggested models, how to solve these problems, which were implemented in “Distributed basketball competition registration and analysis software system”, and other theoretical solutions. Synchronization models are compared with other available solutions, the detail algorithms and methods are reviewed in this document.
25

Towards Design of Lightweight Spatio-Temporal Context Algorithms for Wireless Sensor Networks

Martirosyan, Anahit 29 March 2011 (has links)
Context represents any knowledge obtained from Wireless Sensor Networks (WSNs) about the object being monitored (such as time and location of the sensed events). Time and location are important constituents of context as the information about the events sensed in WSNs is comprehensive when it includes spatio-temporal knowledge. In this thesis, we first concentrate on the development of a suite of lightweight algorithms on temporal event ordering and time synchronization as well as localization for WSNs. Then, we propose an energy-efficient clustering routing protocol for WSNs that is used for message delivery in the former algorithm. The two problems - temporal event ordering and synchronization - are dealt with together as both are concerned with preserving temporal relationships of events in WSNs. The messages needed for synchronization are piggybacked onto the messages exchanged in underlying algorithms. The synchronization algorithm is tailored to the clustered topology in order to reduce the overhead of keeping WSNs synchronized. The proposed localization algorithm has an objective of lowering the overhead of DV-hop based algorithms by reducing the number of floods in the initial position estimation phase. It also randomizes iterative refinement phase to overcome the synchronicity of DV-hop based algorithms. The position estimates with higher confidences are emphasized to reduce the impact of erroneous estimates on the neighbouring nodes. The proposed clustering routing protocol is used for message delivery in the proposed temporal algorithm. Nearest neighbour nodes are employed for inter-cluster communication. The algorithm provides Quality of Service by forwarding high priority messages via the paths with the least cost. The algorithm is also extended for multiple Sink scenario. The suite of algorithms proposed in this thesis provides the necessary tool for providing spatio-temporal context for context-aware WSNs. The algorithms are lightweight as they aim at satisfying WSN's requirements primarily in terms of energy-efficiency, low latency and fault tolerance. This makes them suitable for emergency response applications and ubiquitous computing.
26

Solar discrepancies Mars exploration and the curious problem of inter-planetary time /

Mirmalek, Zara Lenora. January 2008 (has links)
Thesis (Ph. D.)--University of California, San Diego, 2008. / Title from first page of PDF file (viewed September 22, 2008). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 202-225).
27

Time synchronization and communication network redundancy for power network automation

Guo, Hao January 2017 (has links)
Protection and Control (P&C) devices requiring accurate timing within a power transmission substation are commonly synchronized by distributed Global Positioning System (GPS) receivers. However, utilities now request a timing system that is less dependent on the direct use of distributed GPS receivers, because of the reliability issue of GPS receivers. In addition, to reduce device-to-device cabling and enable interoperability among devices from multiple vendors, utilities are looking to adopt the Ethernet based IEC 61850 protocol suites to complement or replace a conventional hardwired secondary P&C system. The IEEE 1588-2008 synchronization protocol is a network based time synchronization technique which can co-exist with the IEC 61850 applications and deliver sub-microsecond timing accuracy. A number of IEC 61850 applications require seamless communication redundancy, whilst existing technologies used in a substation only recover communications tens of milliseconds after a communication failure. Alternatively, the newly released IEC 62439-3 Parallel Redundancy Protocol (PRP) and High-availability Seamless Redundancy (HSR) can achieve seamless redundancy by transmitting duplicate data packets simultaneously in various networks and this can satisfy the extremely high reliability requirements of transmission substations. Considering the benefits, a unified network integrating IEEE 1588 and IEC 62439 PRP/HSR can be foreseen in future substations, but utilities need confidence in these technologies before real deployment. Hence, it is necessary to conduct comprehensive tests on such a timing system so that better insight into the performance and limitation can be obtained. This thesis first investigates the feasibility to integrate IEEE 1588 and IEC 62439 PRP into a single Ethernet network using a simulation tool and subsequently presents how the hardware testbed is established. Meanwhile, although GPS receivers are commonly used for time synchronization in the power industry, their performance might not be fully investigated before deployment. Hence, this thesis also proposes a procedure to assess the performance in terms of long term stability and transient behaviour of a timing system merely based on GPS receivers and one based on a mixture of GPS receivers and IEEE 1588 devices. Test results indicate whichever system is used, careful design of equipment, proper installation and appropriate engineering are required to satisfy the stringent accuracy requirements for critical automation applications in power system.
28

Assisted Partial Timing Support Using Neural Networks

Wännström, Linus January 2018 (has links)
Assisted partial timing support is a method to enhance the synchronization of communication networks based on the Precision Timing Protocol. One of the main benefits of the Precision Timing Protocol is that it can utilize a method called holdover through which synchronization in communication networks can be maintained, however, holdover is easily impacted by network load which may cause it to deviate from a microsecond accuracy that is required. In this project, neural networks are investigated as an aid to assisted partial timing support with the intention to combat the effects of network load. This hypothesis is to achieve this through a neural network being able to predict the offset due to time delay in the communication networks and thus being able to cancel out this effect from previous offset. Feed-forward and recurrent neural networks are tested on four different types of load patterns that commonly occur on communication networks. The results show that although some level of prediction is possible, the accuracy with which the tested neural networks provide prediction is not high enough to allow it to be used for compensation of the offset caused by the load. This with the best result reaching a mean squared error of ten microseconds squared and the requirement looked for was for where the maximum was one microsecond. This project only looked at short periods of the load patterns and future areas to investigate could be looking at longer periods of the load patterns.
29

Time Synchronization in Wireless Sensor Networks:A Survey

Yang, Ying January 2012 (has links)
Wireless sensor networks (WSNs) have been used as an important tool inmany fields of science and industry. Time synchronization is also a criticalissue in wireless sensor networks and its aim is to synchronize the local timefor some or all nodes in the network, if necessary. However, wireless sensornetworks are limited in their accuracy, energy efficiency, scalability, and complexityand some traditional time synchronization algorithms such as NetworkTime Protocol (NTP) and Global Positioning System (GPS) are unsuitable forWSNs. This work surveys and evaluates state-of-art time synchronization protocolsbased on many factors including accuracy, energy efficiency, and complexity,and analyzes the effect that time synchronization has in a wirelesssensor network. IN ADDITION, more attention is paid to several time synchronizationalgorithms and their advantages and disadvantages. Also, the surveyprovides a valuable framework for comparing new and existing synchronizationprotocols. According to the evaluation for the performance of time synchronizationalgorithms, this thesis provides assistance in relation to further improvingthe performance of time synchronization. Finally, future research directionsin relation to time synchronization in wireless sensor networks are alsoproposed.
30

Towards Design of Lightweight Spatio-Temporal Context Algorithms for Wireless Sensor Networks

Martirosyan, Anahit January 2011 (has links)
Context represents any knowledge obtained from Wireless Sensor Networks (WSNs) about the object being monitored (such as time and location of the sensed events). Time and location are important constituents of context as the information about the events sensed in WSNs is comprehensive when it includes spatio-temporal knowledge. In this thesis, we first concentrate on the development of a suite of lightweight algorithms on temporal event ordering and time synchronization as well as localization for WSNs. Then, we propose an energy-efficient clustering routing protocol for WSNs that is used for message delivery in the former algorithm. The two problems - temporal event ordering and synchronization - are dealt with together as both are concerned with preserving temporal relationships of events in WSNs. The messages needed for synchronization are piggybacked onto the messages exchanged in underlying algorithms. The synchronization algorithm is tailored to the clustered topology in order to reduce the overhead of keeping WSNs synchronized. The proposed localization algorithm has an objective of lowering the overhead of DV-hop based algorithms by reducing the number of floods in the initial position estimation phase. It also randomizes iterative refinement phase to overcome the synchronicity of DV-hop based algorithms. The position estimates with higher confidences are emphasized to reduce the impact of erroneous estimates on the neighbouring nodes. The proposed clustering routing protocol is used for message delivery in the proposed temporal algorithm. Nearest neighbour nodes are employed for inter-cluster communication. The algorithm provides Quality of Service by forwarding high priority messages via the paths with the least cost. The algorithm is also extended for multiple Sink scenario. The suite of algorithms proposed in this thesis provides the necessary tool for providing spatio-temporal context for context-aware WSNs. The algorithms are lightweight as they aim at satisfying WSN's requirements primarily in terms of energy-efficiency, low latency and fault tolerance. This makes them suitable for emergency response applications and ubiquitous computing.

Page generated in 0.1208 seconds