• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Automatic diagnostic system for I-shift transmission using vibration analysis / Automatiserat feldetekteringssystem för I-shift växellådor med hjälp av vibrationsanalys

Lennartsson, Richard January 2010 (has links)
<p>This master’s thesis work was performed at Volvo Powertrain in Köping, Sweden, which manufactures gearboxes and integrated transmission systems for heavy vehicles. The thesis is a continuation of a previous master’s thesis performed at the Köping factory in 2009. After manufacturing and assembly, each gearbox is manually validated to ensure the gearbox quality and functionality. When validating the gearbox gears, the operator shifts the gearbox in a predefined manner and listens for irregularities. If an error sound is heard the operator must then locate the source of error. With numerous of cog wheels rotating at the same time this task requires extensive knowledge and experience of the operator. The main objective is to develop an automatic diagnostic system for detection of cog errors and assist the operator in the process of locating the faulty component.</p><p>The work consists of two parts. In the first part the automatic diagnostic system is developed and a database of gearbox recordings is stored. The amounts of logged non-faulty gearboxes are significantly much larger (50) than the logged faulty gearboxes (1). Therefore, when determining thresholds needed for the diagnosis, the data obtained from the non-faulty gearboxes are used. Two statistical methods are presented to extract the thresholds. The first method uses an extremevalue distribution and the other method a Gaussian distribution. When validated, both methods did successfully detect on cog faults. In the second part an investigation is made of how shaft imbalance can be detected and implemented in the developed system.</p><p>Volvo Powertrain continually follows-up all faults found at the validation station to ensure the quality of their work and eliminate the sources of error. During system testing one logged gearbox was found faulty. The automatic diagnostic system did successfully detect and locate the faulty component which later also was confirmed when the gearbox was dismounted. With only one detected error it is difficult to conclude the system performance and further testing is required. However, during the testing no false detections were made.</p>
2

Automatic diagnostic system for I-shift transmission using vibration analysis / Automatiserat feldetekteringssystem för I-shift växellådor med hjälp av vibrationsanalys

Lennartsson, Richard January 2010 (has links)
This master’s thesis work was performed at Volvo Powertrain in Köping, Sweden, which manufactures gearboxes and integrated transmission systems for heavy vehicles. The thesis is a continuation of a previous master’s thesis performed at the Köping factory in 2009. After manufacturing and assembly, each gearbox is manually validated to ensure the gearbox quality and functionality. When validating the gearbox gears, the operator shifts the gearbox in a predefined manner and listens for irregularities. If an error sound is heard the operator must then locate the source of error. With numerous of cog wheels rotating at the same time this task requires extensive knowledge and experience of the operator. The main objective is to develop an automatic diagnostic system for detection of cog errors and assist the operator in the process of locating the faulty component. The work consists of two parts. In the first part the automatic diagnostic system is developed and a database of gearbox recordings is stored. The amounts of logged non-faulty gearboxes are significantly much larger (50) than the logged faulty gearboxes (1). Therefore, when determining thresholds needed for the diagnosis, the data obtained from the non-faulty gearboxes are used. Two statistical methods are presented to extract the thresholds. The first method uses an extremevalue distribution and the other method a Gaussian distribution. When validated, both methods did successfully detect on cog faults. In the second part an investigation is made of how shaft imbalance can be detected and implemented in the developed system. Volvo Powertrain continually follows-up all faults found at the validation station to ensure the quality of their work and eliminate the sources of error. During system testing one logged gearbox was found faulty. The automatic diagnostic system did successfully detect and locate the faulty component which later also was confirmed when the gearbox was dismounted. With only one detected error it is difficult to conclude the system performance and further testing is required. However, during the testing no false detections were made.

Page generated in 0.1206 seconds