• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of Large-Scale Penetration of Electric Vehicles on the Distribution Network and Mitigation by Demand Side Management

Oriaifo, Stacey I. 25 July 2014 (has links)
For the purpose of this study, data for low voltage distribution transformer loading in small communities in Maryland was collected from a local electric utility company. Specifically, analysis was done on three distribution transformers on their system. Each of these transformers serves at least one electric vehicle (EV) owner. Of the three transformers analyzed, Transformer 2 serves eight residential homes and has the highest risk of experiencing an overload if all customers purchase at least one EV. Transformer 2 has a nameplate rating of 25kVA (22.5kW assuming a 0.9 power factor). With one EV owner, Transformer 2 has a peak load of 46.82kW during the study period between August 4 and August 17, 2013. When seven additional EVs of different types were added in a simulated scenario, the peak load for Transformer 2 increased from 46.82kW to 89.76kW, which is outside the transformer thermal limit. With the implementation of TOU pricing, the peak load was reduced to 56.71kW from 89.76kW. By implementing a combination of TOU pricing and appliance cycling through demand side management (DSM), the peak load was further reduced to 52.27kW. / Master of Science
2

Decomposition of Variational Inequalities with Applications to Nash-Cournot Models in Time of Use Electricity Markets

Celebi, Emre January 2011 (has links)
This thesis proposes equilibrium models to link the wholesale and retail electricity markets which allow for reconciliation of the differing time scales of responses of producers (e.g., hourly) and consumers (e.g., monthly) to changing prices. Electricity market equilibrium models with time of use (TOU) pricing scheme are formulated as large-scale variational inequality (VI) problems, a unified and concise approach for modeling the equilibrium. The demand response is dynamic in these models through a dependence on the lagged demand. Different market structures are examined within this context. With an illustrative example, the welfare gains/losses are analyzed after an implementation of TOU pricing scheme over the single pricing scheme. An approximation of the welfare change for this analysis is also presented. Moreover, break-up of a large supplier into smaller parts is investigated. For the illustrative examples presented in the dissertation, overall welfare gains for consumers and lower prices closer to the levels of perfect competition can be realized when the retail pricing scheme is changed from single pricing to TOU pricing. These models can be useful policy tools for regulatory bodies i) to forecast future retail prices (TOU or single prices), ii) to examine the market power exerted by suppliers and iii) to measure welfare gains/losses with different retail pricing schemes (e.g., single versus TOU pricing). With the inclusion of linearized DC network constraints into these models, the problem size grows considerably. Dantzig-Wolfe (DW) decomposition algorithm for VI problems is used to alleviate the computational burden and it also facilitates model management and maintenance. Modification of the DW decomposition algorithm and approximation of the DW master problem significantly improve the computational effort required to find the equilibrium. These algorithms are applied to a two-region energy model for Canada and a realistic Ontario electricity test system. In addition to empirical analysis, theoretical results for the convergence properties of the master problem approximation are presented for DW decomposition of VI problems.
3

Decomposition of Variational Inequalities with Applications to Nash-Cournot Models in Time of Use Electricity Markets

Celebi, Emre January 2011 (has links)
This thesis proposes equilibrium models to link the wholesale and retail electricity markets which allow for reconciliation of the differing time scales of responses of producers (e.g., hourly) and consumers (e.g., monthly) to changing prices. Electricity market equilibrium models with time of use (TOU) pricing scheme are formulated as large-scale variational inequality (VI) problems, a unified and concise approach for modeling the equilibrium. The demand response is dynamic in these models through a dependence on the lagged demand. Different market structures are examined within this context. With an illustrative example, the welfare gains/losses are analyzed after an implementation of TOU pricing scheme over the single pricing scheme. An approximation of the welfare change for this analysis is also presented. Moreover, break-up of a large supplier into smaller parts is investigated. For the illustrative examples presented in the dissertation, overall welfare gains for consumers and lower prices closer to the levels of perfect competition can be realized when the retail pricing scheme is changed from single pricing to TOU pricing. These models can be useful policy tools for regulatory bodies i) to forecast future retail prices (TOU or single prices), ii) to examine the market power exerted by suppliers and iii) to measure welfare gains/losses with different retail pricing schemes (e.g., single versus TOU pricing). With the inclusion of linearized DC network constraints into these models, the problem size grows considerably. Dantzig-Wolfe (DW) decomposition algorithm for VI problems is used to alleviate the computational burden and it also facilitates model management and maintenance. Modification of the DW decomposition algorithm and approximation of the DW master problem significantly improve the computational effort required to find the equilibrium. These algorithms are applied to a two-region energy model for Canada and a realistic Ontario electricity test system. In addition to empirical analysis, theoretical results for the convergence properties of the master problem approximation are presented for DW decomposition of VI problems.

Page generated in 0.0723 seconds